A new effective path has been proposed to formulate thin plate element by using the similarity theory between plane elasticity and plate bending.Because of avoiding the difficulty of c(1)continuity,the construction of...A new effective path has been proposed to formulate thin plate element by using the similarity theory between plane elasticity and plate bending.Because of avoiding the difficulty of c(1)continuity,the construction of thin plate elements becomes easier.The similarity theory and its applications were discussed more deeply,and a new four nodes,sixteen D.O.F.(degree of freedom)thin plate element was presented on the base of the similarity theory.Numerical results for typical problems show that this new element can pass the patch test and has a very good convergence and a high precision.展开更多
Arc ion plating (AIP) is applied to form Ti/(Ti,Cr)N/CrN multilayer coating on the surface of 316L stainless steel (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The characterizations of ...Arc ion plating (AIP) is applied to form Ti/(Ti,Cr)N/CrN multilayer coating on the surface of 316L stainless steel (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The characterizations of the coating are analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Interfacial contact resistance (ICR) between the coated sample and carbon paper is 4.9 m Omega cm(2) under 150 N/cm(2), which is much lower than that of the SS316L substrate. Potentiodynamic and potentiostatic tests are performed in the simulated PEMFC working conditions to investigate the corrosion behaviors of the coated sample. Superior anticorrosion performance is observed for the coated sample, whose corrosion current density is 0.12 mu A/cm(2). Surface morphology results after corrosion tests indicate that the substrate is well protected by the multilayer coating. Performances of the single cell with the multilayer coated SS316L bipolar plate are improved significantly compared with that of the cell with the uncoated SS316L bipolar plate, presenting a great potential for PEMFC application. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
Proton exchange membrane fuel cell(PEMFC)powered automobiles have been recognized to be the ultimate solution to replace traditional fuel automobiles because of their advantages of PEMFCs such as no pollution,low temp...Proton exchange membrane fuel cell(PEMFC)powered automobiles have been recognized to be the ultimate solution to replace traditional fuel automobiles because of their advantages of PEMFCs such as no pollution,low temperature start-up,high energy density,and low noise.As one of the core components,the bipolar plates(BPs)play an important role in the PEMFC stack.Traditional graphite BPs and composite BPs have been criticized for their shortcomings such as low strength,high brittleness,and high processing cost.In contrast,stainless steel BPs(SSBPs)have recently attracted much attention of domestic and foreign researchers because of their excellent comprehensive performance,low cost,and diverse options for automobile applications.However,the SSBPs are prone to corrosion and passivation in the PEMFC working environment,which lead to reduced output power or premature failure.This review is aimed to summarize the corrosion and passivation mechanisms,characterizations and evaluation,and the surface modification technologies in the current SSBPs research.The non-coating and coating technical routes of SSBPs are demonstrated,such as substrate component regulation,thermal nitriding,electroplating,ion plating,chemical vapor deposition,and physical vapor deposition,etc.Alternative coating materials for SSBPs are metal coatings,metal nitride coatings,conductive polymer coatings,and polymer/carbon coatings,etc.Both the surface modification technologies can solve the corrosion resistance problem of stainless steel without affecting the contact resistance,however still facing restraints such as long-time stability,feasibility of low-cost,and mass production process.This paper is believed to enrich the knowledge of high-performance and long-life BPs applied for PEMFC automobiles.展开更多
Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane fo...Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane forces are important.The final deflection of a simply -supported circular rigid-plastic plate loaded by a uniformly distributed impulse is obtained.In comparison with other approximate solutions, the present results are found to be simpler and in better agreement with the corresponding experimental values reoorded by Florence.展开更多
Proton exchange membrane fuel cells(PEMFCs)are largely used in various applications because of their pollution-free products and high energy conversion efficiency.In order to improve the related design,in the present ...Proton exchange membrane fuel cells(PEMFCs)are largely used in various applications because of their pollution-free products and high energy conversion efficiency.In order to improve the related design,in the present work a new spiral flow field with a bypass is proposed.The reaction gas enters the flow field in the central path and diffuses in two directions through the flow channel and the bypass.The bypasses are arranged incrementally.The number of bypasses and the cross-section size of the bypasses are varied parametrically while a single-cell model of the PEMFC is used.The influence of the concentration of liquid water and oxygen in the cell on the performance of different flow fields is determined by means of Computational fluid dynamics(COMSOL Multiphysics software).Results show that when the bypass number is 48 and its cross-sectional area is 0.5 mm^(2),the cell exhibits the best performances.展开更多
Similarity solution of unsteady convective boundary layer flow along isothermal vertical plate with porous medium is analyzed. The plate surface is reactive with the fluid and generates inert specie which diffuses ins...Similarity solution of unsteady convective boundary layer flow along isothermal vertical plate with porous medium is analyzed. The plate surface is reactive with the fluid and generates inert specie which diffuses inside the boundary. The flux of the specie at the plate is proportional to specie concentration at the plate. The governing equations of continuity, momentum, energy and specie diffusion are transformed into ordinary differential equation by using the similarity transformation and solved numerically by using free parameter method along with shooting technique. The dimensionless velocity, temperature and concentration profiles are obtained and presented through figures for different parameters entering into the problem. The local Skin-friction co-efficient, Nusselt number and Sherwood number at the plate for physical interest are also discussed through tables.展开更多
This paper considers the problem of hydrodynamics and thermal boundary layers of Darcy flow over horizontal surface embedded in a porous medium. The solutions of such problems for the cases of uniform surface temperat...This paper considers the problem of hydrodynamics and thermal boundary layers of Darcy flow over horizontal surface embedded in a porous medium. The solutions of such problems for the cases of uniform surface temperature and variable surface temperature have been studied and analysed in many papers. This paper, however, attempts to find similarity solutions for the Darcy flow problem with a convective boundary condition at the plate surface. It is found that the solution is possible when the heat transfer coefficient is proportional to x<sup>–2/3</sup>. The numerical solutions thus obtained are analyzed for a range of values of the parameter characterizing the hot fluid convection process. Analytical expressions are provided for local surface heat flux and total surface heat transfer rate while the flow variables are discussed graphically.展开更多
Unsteady mixed convective boundary layer flow of viscous incompressible fluid along isothermal horizontal plate is analyzed through Similarity Solutions. The governing partial differential equations are transformed in...Unsteady mixed convective boundary layer flow of viscous incompressible fluid along isothermal horizontal plate is analyzed through Similarity Solutions. The governing partial differential equations are transformed into ordinary differential equations using the similarity transformation and solved numerically along with shooting technique. The flow field for the fluid velocity, temperature and concentration at the plate surface are significantly influenced by the governing parameters such as unsteadiness parameter, permeability parameter, Prandtl number, Schmidt number and the other driving parameters. The results show that both fluid velocity and temperature decrease but no significant effect on concentration for the increasing values of Prandtl number. It is also exposed that velocity and concentration is higher at lower Schmidt number for low Prandtl fluid. Finally, the dependency of the Skin-friction co-efficient, Nusselt number and Sherwood number, which are of physical interest, are also illustrated in tabular form for the governing parameters.展开更多
Ionic Polymer-Metal Composite (IPMC) is a new electro-active polymer, which has the advantages of light weight, flexibility, and large stroke with low driving voltage. Because of these features, IPMC can be applied ...Ionic Polymer-Metal Composite (IPMC) is a new electro-active polymer, which has the advantages of light weight, flexibility, and large stroke with low driving voltage. Because of these features, IPMC can be applied to bionic robotic actuators, artificial muscles, as well as dynamic sensors. However, IPMC has the major drawback of low generative blocking force. In this paper, in order to enhance the blocking force, the Nation membranes with thickness of 0.22 mm, 0.32 mm, 0.42 mm, 0.64 mm and 0.8 mm were prepared by casting from liquid solution. By employing these Nation membranes, IPMCs with varying thickness were fabricated by electroless plating. The elastic modulus of the casted Nation membranes were obtained by a nano-indenter, and the current, the displacement and the blocking force were respectively measured by the apparatus for actuation test. Finally, the effects of the thickness on the performance of IPMC were analyzed with an electromechanical model. Experimental study and theory analysis indicate that as the thickness increases, the elastic modulus of Nation membrane and the blocking force of IPMC increase, however, the current and the displacement decrease.展开更多
Thin palladium composite membranes were prepared by modified electroless plating method on a-alumina supports and a dense Pd/α-Al2O3 composite membrane with high hydrogen flux, good selectivity for hydrogen was obtai...Thin palladium composite membranes were prepared by modified electroless plating method on a-alumina supports and a dense Pd/α-Al2O3 composite membrane with high hydrogen flux, good selectivity for hydrogen was obtained. It was tested in a single gas permeation system for hydrogen permeance and hydrogen selectivity over mtrogen. The hydrogen permeance of the corresponding membrane was ashigh as 2.45×10^-6mol·m^-2·s^-1.Pa^-1 and H2/N2 selectivityover700 at 623K and a pressure difference of 0.1MPa. The-main resistance of the composite membrane to H2 permeation lies in the aluminum ceramic support rather than the thin Pd layer.展开更多
The mitigation of the CO inhibition effect in palladium membranes is necessary due to its significance in the efficiency of membrane reactors and hydrogen production systems. In this work, the hydrogen separation perf...The mitigation of the CO inhibition effect in palladium membranes is necessary due to its significance in the efficiency of membrane reactors and hydrogen production systems. In this work, the hydrogen separation performance of a Pd and Pd/Ag membrane both of thickness 2 μm is investigated using a mixed gas with composition (H2 = 50%, CO = 28%, CO2 = 10%, CH4 = 8%, N2 = 4%) at temperature 623 - 873 K and pressure (0.05 - 0.4 bar) was investigated. The component gases CO and CO2 were observed to inhibit hydrogen permeation through the membrane and lead to deviations from Sievert’s law for n values 0.55 and 0.62 for the Pd membrane and unity for the Pd/Ag membrane. For the Pd/Ag membrane, the concentration of CO in the permeate stream was reduced as a result of the addition of Ag. The effect of the component gases to hydrogen permeation was observed to be lower for the Pd/Ag membrane. Annealing the membrane in hydrogen at high temperature decreased the inhibition effect and enhanced hydrogen permeation through the membrane.展开更多
This study describes a novel micro proton exchange membrane fuel cell(PEMFC)(active area,2.5 cm2).The flow field plate is manufactured by applying micro-electromechanical systems(MEMS) technology to silicon substrates...This study describes a novel micro proton exchange membrane fuel cell(PEMFC)(active area,2.5 cm2).The flow field plate is manufactured by applying micro-electromechanical systems(MEMS) technology to silicon substrates to etch flow channels without a gold-coating.Therefore,this investigation used MEMS technology for fabrication of a flow field plate and presents a novel fabrication procedure.Various operating parameters,such as fuel temperature and fuel stoichiometric flow rate,are tested to optimize micro PEMFC performance.A single micro PEMFC using MEMS technology reveals the ideal performance of the proposed fuel cell.The optimal power density approaches 232.75 mW·cm-1 when the fuel cell is operated at ambient condition with humidified,heated fuel.展开更多
Pd/Ag/α-Al2O3 composite membranes were prepared by sequential electroless plating technique. The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy disper...Pd/Ag/α-Al2O3 composite membranes were prepared by sequential electroless plating technique. The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy, and inductively coupled plasma atomic emission spectroscopy techniques (ICP-AES). Effects of annealing time, Ag content, and air treatment on the hydrogen permeation flux and morphology of the alloys were investigated. The results of the investigation showed that the prepared type of tube had a good potential as substrate for membrane preparation. In addition, a uniform defect-free alloy was prepared by annealing at 550 ℃ in H2 atmosphere. The permeation results showed an increase in H2 permeation flux by increasing the Ag content and the annealing time. In addition, the air treatment of the prepared membranes at 400 ℃ for 1 h changed the morphology of the alloy and substantially enhanced the hydrogen flux.展开更多
The electroless plating of palladium and palladium alloy membranes is fast becoming an important and enabling technology. This is more so when juxtaposed with the rising demand for high purity hydrogen for application...The electroless plating of palladium and palladium alloy membranes is fast becoming an important and enabling technology. This is more so when juxtaposed with the rising demand for high purity hydrogen for applications particularly in proton exchange membrane fuel cells (PEMFC). The effect of process factors such as sensitization and activation during surface modification, concentration of the reducing agent, plating temperature, time, pH, additives, air aeration on plating efficiency, quality of the palladium film and deposit morphology is reviewed with the aim of identifying areas requiring further investigation. The paper also reviews how these process factors could be optimised for better plating efficiency and overall membrane quality. The concentration of the reducing agent has been identified as the limiting factor on plating efficiency albeit other process factors separately impact on the plating efficiency. Furthermore, bulk precipitation caused by concentration of the reducing agent has been identified as a major problem during electroless plating with hydrazine based plating baths. To ameliorate this problem, a multi step addition of the hydrazine reducer in separate portions has been recommended.展开更多
Owing to the constraints on the fabrication ofγ-ray coding plates with many pixels,few studies have been carried out onγ-ray computational ghost imaging.Thus,the development of coding plates with fewer pixels is ess...Owing to the constraints on the fabrication ofγ-ray coding plates with many pixels,few studies have been carried out onγ-ray computational ghost imaging.Thus,the development of coding plates with fewer pixels is essential to achieveγ-ray computational ghost imaging.Based on the regional similarity between Hadamard subcoding plates,this study presents an optimization method to reduce the number of pixels of Hadamard coding plates.First,a moving distance matrix was obtained to describe the regional similarity quantitatively.Second,based on the matrix,we used two ant colony optimization arrangement algorithms to maximize the reuse of pixels in the regional similarity area and obtain new compressed coding plates.With full sampling,these two algorithms improved the pixel utilization of the coding plate,and the compression ratio values were 54.2%and 58.9%,respectively.In addition,three undersampled sequences(the Harr,Russian dolls,and cake-cutting sequences)with different sampling rates were tested and discussed.With different sampling rates,our method reduced the number of pixels of all three sequences,especially for the Russian dolls and cake-cutting sequences.Therefore,our method can reduce the number of pixels,manufacturing cost,and difficulty of the coding plate,which is beneficial for the implementation and application ofγ-ray computational ghost imaging.展开更多
The stability of composite palladium membranes is of key importance for their application in hydrogen energy systems. Most of these membranes are prepared by electroless plating, and beforehand the substrate surface i...The stability of composite palladium membranes is of key importance for their application in hydrogen energy systems. Most of these membranes are prepared by electroless plating, and beforehand the substrate surface is activated by a SnCl_2–PdCl_2 process, but this process leads to a residue of Sn, which has been reported to be harmful to the membrane stability. In this work, the Pd/Al_2O_3 membranes were prepared by electroless plating after the SnCl_2–PdCl_2 process. The amount of Sn residue was adjusted by the SnCl_2 concentration, activation times and additional Sn(OH)_2coating. The surface morphology, cross-sectional structure and elemental composition were analyzed by scanning electron microscopy(SEM), metallography and energy dispersive spectroscopy(EDS), respectively. Hydrogen permeation stability of the prepared palladium membranes were tested at450–600 °C for 400 h. It was found that the higher SnCl_2 concentration and activation times enlarged the Sn residue amount and led to a lower initial selectivity but a better membrane stability. Moreover, the additional Sn(OH)_2coating on the Al_2O_3 substrate surface also greatly improved the membrane selectivity and stability.Therefore, it can be concluded that the Sn residue from the SnCl_2–PdCl_2 process cannot be a main factor for the stability of the composite palladium membranes at high temperatures.展开更多
The surface of an α- AI2O3 carrier for semi-permeable zeolite membranes was modified with copper via an electroless plating process. Following hydrothermal synthesis, dense and highly organized zeolite membranes were...The surface of an α- AI2O3 carrier for semi-permeable zeolite membranes was modified with copper via an electroless plating process. Following hydrothermal synthesis, dense and highly organized zeolite membranes were obtained. Membrane thickness was confined to the nanoscale following layer-by-layer self-assembly of polyelectrolytes with opposite charges. This con trollable and low-cost preparati on method could drastically reduce the cost of fabricating reverse osmosis membranes, which is highly significant for the realization of large-scale seawater desalination through reverse osmosis. Understa nding the in fluences of interacti ons between various ions and the zeolite pores, in ter-crystalli ne gaps, membrane structure and surface chemical properties, transmembrane pressure, and temperature on the desalination process will help provide a theoretical basis and referenee point for the development of reverse osmosis membranes.展开更多
基金the National Natural Science Foundation of China(19732020)
文摘A new effective path has been proposed to formulate thin plate element by using the similarity theory between plane elasticity and plate bending.Because of avoiding the difficulty of c(1)continuity,the construction of thin plate elements becomes easier.The similarity theory and its applications were discussed more deeply,and a new four nodes,sixteen D.O.F.(degree of freedom)thin plate element was presented on the base of the similarity theory.Numerical results for typical problems show that this new element can pass the patch test and has a very good convergence and a high precision.
基金financially supported by the National Basic Research Program of China (973 Program) (no. 2012CB215500)the National Key Technology Research and Development Program of China (no. 2015BAG06B00)+1 种基金Major Program of the National Natural Science Foundation of China (no. 61433013)National Natural Science Foundation of China (no. 21206012)
文摘Arc ion plating (AIP) is applied to form Ti/(Ti,Cr)N/CrN multilayer coating on the surface of 316L stainless steel (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The characterizations of the coating are analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Interfacial contact resistance (ICR) between the coated sample and carbon paper is 4.9 m Omega cm(2) under 150 N/cm(2), which is much lower than that of the SS316L substrate. Potentiodynamic and potentiostatic tests are performed in the simulated PEMFC working conditions to investigate the corrosion behaviors of the coated sample. Superior anticorrosion performance is observed for the coated sample, whose corrosion current density is 0.12 mu A/cm(2). Surface morphology results after corrosion tests indicate that the substrate is well protected by the multilayer coating. Performances of the single cell with the multilayer coated SS316L bipolar plate are improved significantly compared with that of the cell with the uncoated SS316L bipolar plate, presenting a great potential for PEMFC application. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金supported by the National Natural Science Foundation of China(No.51704017)the National Key Research and Development plan of China(No.2018YFB1502403)the Communication Program for Young Scientist in USTB(No.QNXM20210010)。
文摘Proton exchange membrane fuel cell(PEMFC)powered automobiles have been recognized to be the ultimate solution to replace traditional fuel automobiles because of their advantages of PEMFCs such as no pollution,low temperature start-up,high energy density,and low noise.As one of the core components,the bipolar plates(BPs)play an important role in the PEMFC stack.Traditional graphite BPs and composite BPs have been criticized for their shortcomings such as low strength,high brittleness,and high processing cost.In contrast,stainless steel BPs(SSBPs)have recently attracted much attention of domestic and foreign researchers because of their excellent comprehensive performance,low cost,and diverse options for automobile applications.However,the SSBPs are prone to corrosion and passivation in the PEMFC working environment,which lead to reduced output power or premature failure.This review is aimed to summarize the corrosion and passivation mechanisms,characterizations and evaluation,and the surface modification technologies in the current SSBPs research.The non-coating and coating technical routes of SSBPs are demonstrated,such as substrate component regulation,thermal nitriding,electroplating,ion plating,chemical vapor deposition,and physical vapor deposition,etc.Alternative coating materials for SSBPs are metal coatings,metal nitride coatings,conductive polymer coatings,and polymer/carbon coatings,etc.Both the surface modification technologies can solve the corrosion resistance problem of stainless steel without affecting the contact resistance,however still facing restraints such as long-time stability,feasibility of low-cost,and mass production process.This paper is believed to enrich the knowledge of high-performance and long-life BPs applied for PEMFC automobiles.
基金The project supported by a fund from the National Educational Committee.
文摘Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane forces are important.The final deflection of a simply -supported circular rigid-plastic plate loaded by a uniformly distributed impulse is obtained.In comparison with other approximate solutions, the present results are found to be simpler and in better agreement with the corresponding experimental values reoorded by Florence.
基金Thanks to Major Scientific and Technological Innovation Projects in Shandong Province(2018-CXGC0803)for the financial support of this article.
文摘Proton exchange membrane fuel cells(PEMFCs)are largely used in various applications because of their pollution-free products and high energy conversion efficiency.In order to improve the related design,in the present work a new spiral flow field with a bypass is proposed.The reaction gas enters the flow field in the central path and diffuses in two directions through the flow channel and the bypass.The bypasses are arranged incrementally.The number of bypasses and the cross-section size of the bypasses are varied parametrically while a single-cell model of the PEMFC is used.The influence of the concentration of liquid water and oxygen in the cell on the performance of different flow fields is determined by means of Computational fluid dynamics(COMSOL Multiphysics software).Results show that when the bypass number is 48 and its cross-sectional area is 0.5 mm^(2),the cell exhibits the best performances.
文摘Similarity solution of unsteady convective boundary layer flow along isothermal vertical plate with porous medium is analyzed. The plate surface is reactive with the fluid and generates inert specie which diffuses inside the boundary. The flux of the specie at the plate is proportional to specie concentration at the plate. The governing equations of continuity, momentum, energy and specie diffusion are transformed into ordinary differential equation by using the similarity transformation and solved numerically by using free parameter method along with shooting technique. The dimensionless velocity, temperature and concentration profiles are obtained and presented through figures for different parameters entering into the problem. The local Skin-friction co-efficient, Nusselt number and Sherwood number at the plate for physical interest are also discussed through tables.
文摘This paper considers the problem of hydrodynamics and thermal boundary layers of Darcy flow over horizontal surface embedded in a porous medium. The solutions of such problems for the cases of uniform surface temperature and variable surface temperature have been studied and analysed in many papers. This paper, however, attempts to find similarity solutions for the Darcy flow problem with a convective boundary condition at the plate surface. It is found that the solution is possible when the heat transfer coefficient is proportional to x<sup>–2/3</sup>. The numerical solutions thus obtained are analyzed for a range of values of the parameter characterizing the hot fluid convection process. Analytical expressions are provided for local surface heat flux and total surface heat transfer rate while the flow variables are discussed graphically.
文摘Unsteady mixed convective boundary layer flow of viscous incompressible fluid along isothermal horizontal plate is analyzed through Similarity Solutions. The governing partial differential equations are transformed into ordinary differential equations using the similarity transformation and solved numerically along with shooting technique. The flow field for the fluid velocity, temperature and concentration at the plate surface are significantly influenced by the governing parameters such as unsteadiness parameter, permeability parameter, Prandtl number, Schmidt number and the other driving parameters. The results show that both fluid velocity and temperature decrease but no significant effect on concentration for the increasing values of Prandtl number. It is also exposed that velocity and concentration is higher at lower Schmidt number for low Prandtl fluid. Finally, the dependency of the Skin-friction co-efficient, Nusselt number and Sherwood number, which are of physical interest, are also illustrated in tabular form for the governing parameters.
基金Acknowledgement The authors thank the financial support from the National Natural Science Foundation of China (Grant No. 50705043, 60535020 and 60910007).
文摘Ionic Polymer-Metal Composite (IPMC) is a new electro-active polymer, which has the advantages of light weight, flexibility, and large stroke with low driving voltage. Because of these features, IPMC can be applied to bionic robotic actuators, artificial muscles, as well as dynamic sensors. However, IPMC has the major drawback of low generative blocking force. In this paper, in order to enhance the blocking force, the Nation membranes with thickness of 0.22 mm, 0.32 mm, 0.42 mm, 0.64 mm and 0.8 mm were prepared by casting from liquid solution. By employing these Nation membranes, IPMCs with varying thickness were fabricated by electroless plating. The elastic modulus of the casted Nation membranes were obtained by a nano-indenter, and the current, the displacement and the blocking force were respectively measured by the apparatus for actuation test. Finally, the effects of the thickness on the performance of IPMC were analyzed with an electromechanical model. Experimental study and theory analysis indicate that as the thickness increases, the elastic modulus of Nation membrane and the blocking force of IPMC increase, however, the current and the displacement decrease.
基金Supported by the National Natural Science Foundation of China (No.20425619).
文摘Thin palladium composite membranes were prepared by modified electroless plating method on a-alumina supports and a dense Pd/α-Al2O3 composite membrane with high hydrogen flux, good selectivity for hydrogen was obtained. It was tested in a single gas permeation system for hydrogen permeance and hydrogen selectivity over mtrogen. The hydrogen permeance of the corresponding membrane was ashigh as 2.45×10^-6mol·m^-2·s^-1.Pa^-1 and H2/N2 selectivityover700 at 623K and a pressure difference of 0.1MPa. The-main resistance of the composite membrane to H2 permeation lies in the aluminum ceramic support rather than the thin Pd layer.
文摘The mitigation of the CO inhibition effect in palladium membranes is necessary due to its significance in the efficiency of membrane reactors and hydrogen production systems. In this work, the hydrogen separation performance of a Pd and Pd/Ag membrane both of thickness 2 μm is investigated using a mixed gas with composition (H2 = 50%, CO = 28%, CO2 = 10%, CH4 = 8%, N2 = 4%) at temperature 623 - 873 K and pressure (0.05 - 0.4 bar) was investigated. The component gases CO and CO2 were observed to inhibit hydrogen permeation through the membrane and lead to deviations from Sievert’s law for n values 0.55 and 0.62 for the Pd membrane and unity for the Pd/Ag membrane. For the Pd/Ag membrane, the concentration of CO in the permeate stream was reduced as a result of the addition of Ag. The effect of the component gases to hydrogen permeation was observed to be lower for the Pd/Ag membrane. Annealing the membrane in hydrogen at high temperature decreased the inhibition effect and enhanced hydrogen permeation through the membrane.
基金Supported by the National Science Council (NSC 97-2221-E-009-067)
文摘This study describes a novel micro proton exchange membrane fuel cell(PEMFC)(active area,2.5 cm2).The flow field plate is manufactured by applying micro-electromechanical systems(MEMS) technology to silicon substrates to etch flow channels without a gold-coating.Therefore,this investigation used MEMS technology for fabrication of a flow field plate and presents a novel fabrication procedure.Various operating parameters,such as fuel temperature and fuel stoichiometric flow rate,are tested to optimize micro PEMFC performance.A single micro PEMFC using MEMS technology reveals the ideal performance of the proposed fuel cell.The optimal power density approaches 232.75 mW·cm-1 when the fuel cell is operated at ambient condition with humidified,heated fuel.
文摘Pd/Ag/α-Al2O3 composite membranes were prepared by sequential electroless plating technique. The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy, and inductively coupled plasma atomic emission spectroscopy techniques (ICP-AES). Effects of annealing time, Ag content, and air treatment on the hydrogen permeation flux and morphology of the alloys were investigated. The results of the investigation showed that the prepared type of tube had a good potential as substrate for membrane preparation. In addition, a uniform defect-free alloy was prepared by annealing at 550 ℃ in H2 atmosphere. The permeation results showed an increase in H2 permeation flux by increasing the Ag content and the annealing time. In addition, the air treatment of the prepared membranes at 400 ℃ for 1 h changed the morphology of the alloy and substantially enhanced the hydrogen flux.
文摘The electroless plating of palladium and palladium alloy membranes is fast becoming an important and enabling technology. This is more so when juxtaposed with the rising demand for high purity hydrogen for applications particularly in proton exchange membrane fuel cells (PEMFC). The effect of process factors such as sensitization and activation during surface modification, concentration of the reducing agent, plating temperature, time, pH, additives, air aeration on plating efficiency, quality of the palladium film and deposit morphology is reviewed with the aim of identifying areas requiring further investigation. The paper also reviews how these process factors could be optimised for better plating efficiency and overall membrane quality. The concentration of the reducing agent has been identified as the limiting factor on plating efficiency albeit other process factors separately impact on the plating efficiency. Furthermore, bulk precipitation caused by concentration of the reducing agent has been identified as a major problem during electroless plating with hydrazine based plating baths. To ameliorate this problem, a multi step addition of the hydrazine reducer in separate portions has been recommended.
基金supported by the Youth Science Foundation of Sichuan Province(Nos.22NSFSC3816 and 2022NSFSC1231)the General Project of the National Natural Science Foundation of China(Nos.12075039 and 41874121)the Key Project of the National Natural Science Foundation of China(No.U19A2086).
文摘Owing to the constraints on the fabrication ofγ-ray coding plates with many pixels,few studies have been carried out onγ-ray computational ghost imaging.Thus,the development of coding plates with fewer pixels is essential to achieveγ-ray computational ghost imaging.Based on the regional similarity between Hadamard subcoding plates,this study presents an optimization method to reduce the number of pixels of Hadamard coding plates.First,a moving distance matrix was obtained to describe the regional similarity quantitatively.Second,based on the matrix,we used two ant colony optimization arrangement algorithms to maximize the reuse of pixels in the regional similarity area and obtain new compressed coding plates.With full sampling,these two algorithms improved the pixel utilization of the coding plate,and the compression ratio values were 54.2%and 58.9%,respectively.In addition,three undersampled sequences(the Harr,Russian dolls,and cake-cutting sequences)with different sampling rates were tested and discussed.With different sampling rates,our method reduced the number of pixels of all three sequences,especially for the Russian dolls and cake-cutting sequences.Therefore,our method can reduce the number of pixels,manufacturing cost,and difficulty of the coding plate,which is beneficial for the implementation and application ofγ-ray computational ghost imaging.
基金Supported by the National High Technology Research and Development Program of China(863 Program,2009AA05ZI03)the Natural Science Foundation of Jiangsu Province(BK 20130940,BK 20130916)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The stability of composite palladium membranes is of key importance for their application in hydrogen energy systems. Most of these membranes are prepared by electroless plating, and beforehand the substrate surface is activated by a SnCl_2–PdCl_2 process, but this process leads to a residue of Sn, which has been reported to be harmful to the membrane stability. In this work, the Pd/Al_2O_3 membranes were prepared by electroless plating after the SnCl_2–PdCl_2 process. The amount of Sn residue was adjusted by the SnCl_2 concentration, activation times and additional Sn(OH)_2coating. The surface morphology, cross-sectional structure and elemental composition were analyzed by scanning electron microscopy(SEM), metallography and energy dispersive spectroscopy(EDS), respectively. Hydrogen permeation stability of the prepared palladium membranes were tested at450–600 °C for 400 h. It was found that the higher SnCl_2 concentration and activation times enlarged the Sn residue amount and led to a lower initial selectivity but a better membrane stability. Moreover, the additional Sn(OH)_2coating on the Al_2O_3 substrate surface also greatly improved the membrane selectivity and stability.Therefore, it can be concluded that the Sn residue from the SnCl_2–PdCl_2 process cannot be a main factor for the stability of the composite palladium membranes at high temperatures.
基金supported by the Naional Science and Technology Major Project of China(Title:Study on multifunctional synergistic antifouling coatings and their-supporting anticorrosion coatings,No u1706225)
文摘The surface of an α- AI2O3 carrier for semi-permeable zeolite membranes was modified with copper via an electroless plating process. Following hydrothermal synthesis, dense and highly organized zeolite membranes were obtained. Membrane thickness was confined to the nanoscale following layer-by-layer self-assembly of polyelectrolytes with opposite charges. This con trollable and low-cost preparati on method could drastically reduce the cost of fabricating reverse osmosis membranes, which is highly significant for the realization of large-scale seawater desalination through reverse osmosis. Understa nding the in fluences of interacti ons between various ions and the zeolite pores, in ter-crystalli ne gaps, membrane structure and surface chemical properties, transmembrane pressure, and temperature on the desalination process will help provide a theoretical basis and referenee point for the development of reverse osmosis membranes.