期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Reduction of VOC emissions by a membrane-based gas absorption process 被引量:10
1
作者 LI Rui, XU Jun, WANG Lianjun, LI Jiansheng, SUN Xiuyun School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第8期1096-1102,共7页
A membrane-based gas absorption (MGA) process was evaluated for the removal of volatile organic compounds (VOCs) based on C6H6/N2 mixture. The absorption of C6H6 from a C6H6/N2 mixture was investigated using a hyd... A membrane-based gas absorption (MGA) process was evaluated for the removal of volatile organic compounds (VOCs) based on C6H6/N2 mixture. The absorption of C6H6 from a C6H6/N2 mixture was investigated using a hydrophobic polypropylene hollow fiber membrane contactor and the aqueous solution of N-formyl morpholine (NFM) as absorbent. The effects of various factors on the overall mass transfer coefficient was investigated. The experimental results showed that the removal efficiency of C6H6 could reach 99.5% in present studied system. A mathematical model based on resistance-in-series concept was presented to predict the value of overall mass transfer coefficient. The average error between the predicted and experimental values is 7.9%. In addition, conventional packed columns for VOCs removal was also evaluated for comparison. 展开更多
关键词 VOCs removal membrane contactor membrane-based gas absorption mass transfer model
下载PDF
Carbon dioxide induced degradation of diethanolamine during absorption and desorption processes 被引量:1
2
作者 Md.Sakinul Islam Kotaiah Naik Dhanavath +3 位作者 Nhol Kao Pradipto K.Bhattacharjee Brahim Si Ali Rozita Yusoff 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第2期293-302,共10页
Alkanolamines are widely used in the purification of the sourgas sweetening process. During the sour gas absorption process, CO_2 significantly degrades the amine solvent and creates enormous problems for plant operat... Alkanolamines are widely used in the purification of the sourgas sweetening process. During the sour gas absorption process, CO_2 significantly degrades the amine solvent and creates enormous problems for plant operation. In this work, CO_2 induced degradation of aqueous diethanolamine(DEA) solution was conducted in a 1.25 L jacketed glass reactor that functioned as an absorber and stripper at atmospheric conditions. Pure CO_2 was bubbled through the reactor until the solution became saturated. In this study, the concentrations of DEA used were in the range of concentrations between 2 mol·L^(-1) and 4 mol·L^(-1). In the degradation experiment, six generic cycles were conducted for each run. Each cycle was configured with the absorption and desorption of carbon dioxide at 55 ℃ and 100 ℃, respectively. Samples were collected after a predetermined experimental time and analyzed by ion chromatography(IC) to identify unknown ionic degradation products(DGPs). In the IC analysis, three different columns were used for anion, cation and ion exclusion systems, which are Metrosep A Supp 5150/4.0, Metrosep C Supp 4 150/4.0 and Metrosep Organic Acids, respectively. The major identified DGPs of D01 DEA2 M, D02 DEA3 M, and D03 DEA4 M are nitrite, acetate and ammonium. Phosphate product was found in the degraded amine samples which might be due to the contamination of water or chromatographic system. 展开更多
关键词 Degradation Diethanolamine absorption Stripping gas sweetening process
下载PDF
Wet flue gas desulfurization performance of 330 MW coal-fired power unit based on computational fluid dynamics region identification of flow pattern and transfer process 被引量:1
3
作者 Jiangyuan Qu Nana Qi +2 位作者 Kai Zhang Lifeng Li PengchengWang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期13-26,共14页
Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on ... Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on inter-phase transfer behaviors with non-ideal contacting patterns of flue gas and slurry droplets,three regions in spray scrubber are distinguished in terms of gas-slurry flow structures using CFD method in the Eulerian-Lagrangian framework.A comprehensive model is established by involving the transfer process between two phases and chemical reactions in aqueous phase,which is validatedwith the measured data froma WFGD scrubber of 330 MW coal-fired power unit.Numerical results show that the overall uniformity degree of flue gas in whole scrubber is largely determined by the force-balanced droplets in the middle part of scrubber,which is dominated by counter-current mode.Both momentum transfer behavior and SO_(2) chemical absorption process present the synchronicity with the evolution of gas-slurry flow pattern,whilst the heat transfer together with H_(2)O evaporation has little effect on overall absorption process.Three regions are firstly defined as Gas Inlet Region(GIR),Dominant Absorption Region(DAR)and Slurry Dispersed Region(SDR)from the bottom to top of scrubber.SO_(2) is mainly scrubbed in DAR,which provides much more intensive interaction between two phases compared to GIR or SDR.A better understanding of the desulfurization process is obtained from the fundamental relationship between transport phenomena and chemical reactions based upon the complicated hydrodynamics of gas-slurry two-phase flow,which should be useful for designing and optimizing the scrubber in coal-fired power unit. 展开更多
关键词 Wet flue gas desulfurization gas-liquid flow Eulerian-Lagrangian model Flow pattern Transport processes absorption
下载PDF
Recent advances on the membrane processes for CO_2 separation 被引量:6
4
作者 Jiayou Xu Hongyu Wu +3 位作者 Zhi Wang Zhihua Qiao Song Zhao Jixiao Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第11期2280-2291,共12页
Membrane separation technology has popularized rapidly and attracts much interest in gas industry as a promising sort of newly chemical separation unit operation. In this paper, recent advances on membrane processes f... Membrane separation technology has popularized rapidly and attracts much interest in gas industry as a promising sort of newly chemical separation unit operation. In this paper, recent advances on membrane processes for CO_2 separation are reviewed. The researches indicate that the optimization of operating process designs could improve the separation performance, reduce the energy consumption and decrease the cost of membrane separation systems. With the improvement of membrane materials recently,membrane processes are beginning to be competitive enough for CO_2 separation, especially for postcombustion CO_2 capture, biogas upgrading and natural gas carbon dioxide removal, compared with the traditional separation methods. We summarize the needs and most promising research directions for membrane processes for CO_2 separation in current and future membrane applications. As the time goes by, novel membrane materials developed according to the requirement proposed by process optimization with increased selectivity and/or permeance will accelerate the industrialization of membrane process in the near future. Based on the data collected in a pilot scale test, more effort could be made on the optimization of membrane separation processes. This work would open up a new horizon for CO_2 separation/Capture on Carbon Capture Utilization and Storage(CCUS). 展开更多
关键词 membrane-based process systems SEPARATION FLUE gas CO2 CAPTURE BIOgas UPGRADING Natural gas
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部