The interaction between membrane structures and their environment can be either static or dynamic. Static interaction refers to interaction with static air, while dynamic interaction refers to wind and its effects. Th...The interaction between membrane structures and their environment can be either static or dynamic. Static interaction refers to interaction with static air, while dynamic interaction refers to wind and its effects. They can be evaluated by two parameters, added mass and radiation/aerodynamic damping, which are experimentally investigated in this study. The study includes the effects of both the static and dynamic interaction on structural dynamic characteristics, and the relationship between the interaction parameters and the covered area of a membrane structure for the static interaction and the relationship between the interaction parameters and wind direction and speed for the dynamic interaction. Experimental data show that the dynamic interaction is strongly correlated with the structural modes, i.e., the interaction of the symmetric modes is much larger than the anti-synmletric modes; and the influence of the dynamic interaction is significant in wind-induced response analysis and cannot be ignored. In addition, it is concluded that the structural natural frequency is remarkably decreased by this interaction, and the frequency band is significantly broadened.展开更多
A multi-objective optimization method based on Pareto Genetic Algorithm is presented for shape design of membrane structures from a structural view point.Several non-dimensional variables are defined as optimization v...A multi-objective optimization method based on Pareto Genetic Algorithm is presented for shape design of membrane structures from a structural view point.Several non-dimensional variables are defined as optimization variables,which are decision factors of shapes of membrane structures.Three objectives are proposed including maximization of stiffness,maximum uniformity of stress and minimum reaction under external loads.Pareto Multi-objective Genetic Algorithm is introduced to solve the Pareto solutions.Consequently,the dependence of the optimality upon the optimization variables is derived to provide guidelines on how to determine design parameters.Moreover,several examples illustrate the proposed methods and applications.The study shows that the multi-objective optimization method in this paper is feasible and efficient for membrane structures;the research on Pareto solutions can provide explicit and useful guidelines for shape design of membrane structures.展开更多
In routine design of tensioned membrane structures, the membrane is generally modeled using space membrane elements and the cables by space cable elements, with no sliding allowed between the membrane and the cables. ...In routine design of tensioned membrane structures, the membrane is generally modeled using space membrane elements and the cables by space cable elements, with no sliding allowed between the membrane and the cables. On the other hand, large deflections are expected and sliding between the membrane and the cables is inevitable. In the present paper, the general finite element code ABAQUS was employed to investigate the influence of cable sliding on membrane surface on the structural behavior. Three analysis models were devised to fulfill this purpose: (1) The membrane element shares nodes with the cable element; (2) The cable can slide on the membrane surface freely (without friction) and (3) The cable can slide on the membrane surface, but with friction between the cable and the membrane. The sliding problem is modeled using a surface - based contact algorithm. The results from three analysis models are compared, showing that cable sliding has only little influence on the structure shape and on the stress distributions in the membrane. The main influence of cable sliding may be its effect on the dynamic behavior of tensioned membrane structures.展开更多
Conical membrane structures are a typical form of tensile membrane structures. In the past, most studies focused on the static performance, but few on dynamic performance. In this paper, systematic parameter analysis ...Conical membrane structures are a typical form of tensile membrane structures. In the past, most studies focused on the static performance, but few on dynamic performance. In this paper, systematic parameter analysis of wind-induced response of conical membrane structures has been performed with nonlinear random simulation method in a time domain, by considering some parameters, such as span, rise-span ratio, prestress of membrane, and characteristic of the approaching wind flow. Moreover, formulas of the dynamic coefficient and nonlinear adjustment factor are advised, which can be conveniently used in wind-resistant design of conical membrane structures.展开更多
Practical techniques for smooth geodesic patterning of membrane structures were investigated.For the geodesic search,adjustment of the subplane of the extracted elements series was proposed,and various spline approxim...Practical techniques for smooth geodesic patterning of membrane structures were investigated.For the geodesic search,adjustment of the subplane of the extracted elements series was proposed,and various spline approximation methods were used to flatten the strip for the generation of a smooth pattern.This search approach is very simple,and the geodesic line could be easily attained by the proposed method without the need for a difficult computation method.Smooth cutting patterning can also be generated by spline approximation without the noise in discrete nodal information.Additionally,the geodesic cutting pattern saved about 21%of the required area for the catenary model due to the reduction of the curvature of the planar pattern seam line.展开更多
The purpose of this paper is to demonstrate and investigate the concepts of new deployable boom systems, which consist of the BCON (braid coated bi-convex tape) boom and the SMA-BCON (braid coated bi-shape memory a...The purpose of this paper is to demonstrate and investigate the concepts of new deployable boom systems, which consist of the BCON (braid coated bi-convex tape) boom and the SMA-BCON (braid coated bi-shape memory alloy convex tape) boom. Both booms are developed for the deployable membrane structures such as solar sails, thin membrane solar array panels, deorbit mechanisms for small satellites and reflectors of space solar power satellite, etc. BCON booms can store around polygonal or cylindrical center hub, and the booms can deploy by the stepwise manner by releasing a constraint mechanism which pins the boons into two or three points for the total length. SMA-BCON booms are mainly developed for a square center body systems, and SMA is adapted on the bent po^nts of the booms where stored around each edge of the center hub. Through the deployment experiments of both booms, the stepwise deployment behavior and its tendency are obtained. The design concept of BCON boom and SMA-BCON hnnm i~ demonstrated through this study.展开更多
By the optimum theory, a new cutting analytical method of the membrane structure is developed. The B-spline curve is applied to make smooth the boundary of the membrane strip. By this method, the cutting accuracy is i...By the optimum theory, a new cutting analytical method of the membrane structure is developed. The B-spline curve is applied to make smooth the boundary of the membrane strip. By this method, the cutting accuracy is improved. Finally, a cutting analysis example of a tension membrane structure is given.展开更多
Changes in the surface structure of cell membrane and the contents of membrane pro- teins and nuclear DNA of human gastric cancer (BGC-823) cells treated with organotin compound (Et_2SnCl_2phen) were studied with a sc...Changes in the surface structure of cell membrane and the contents of membrane pro- teins and nuclear DNA of human gastric cancer (BGC-823) cells treated with organotin compound (Et_2SnCl_2phen) were studied with a scanning electron microscope (SEM),a scanning tunneling,micro- scope (STM),and a cytofluorophotometer.It was found that Et_2SnCl_2Phen not only inhibited the cell growth but also remarkably changed the surface structure of the membrane of cancer cells.The surface of Et_2SnCl_2phen treated cancer cells was relatively smooth and showed fewer microvilli under SEM. STM images showed an uneven and loose distribution of the surface of the cell.In comparison with the untreated cancer cells,there was an evident decrease in the content of membrane proteins and nuclear DNA in Et_2SnCl_2phen treated cells.展开更多
Microporous membranes of low-high density polyethylene and their blends were prepared bythermally-induced phase separation of polymer/long-aliphatic chain alcohol (diluent) mixtures.The microstructures of this particu...Microporous membranes of low-high density polyethylene and their blends were prepared bythermally-induced phase separation of polymer/long-aliphatic chain alcohol (diluent) mixtures.The microstructures of this particular membrane, which depends on the diluent properties,polymer concentration and cooling rate, were observed by scanning electron microscopy.'Beehive-type,'leafy-like, and lacy porous structure morphologies can be formed,depending onthe blend composition and phase separation conditions, which were discussed by the polymer anddiluent crystallization processes.展开更多
Prediction of wrinkling characteristics is strongly correlated with the strain perpendicular to wrinkling direc- tion. In this paper, the strain field of wrinkled membrane is tested by VIC-3D system based on the digit...Prediction of wrinkling characteristics is strongly correlated with the strain perpendicular to wrinkling direc- tion. In this paper, the strain field of wrinkled membrane is tested by VIC-3D system based on the digital image correlation technique. Experimental results are validated by the tension wrinkling simulation. The experimental strain perpendicular to wrinkling direction is analyzed in depth. The wrinkling strain of a square wrinkled membrane under corner tension is extracted from experimental strain perpendicular to wrinkling direction. A quantitative characterization format of the experimental wrinkling strain is proposed. A modified prediction method of wrinkling amplitude is presented based on the experimental wrinkling strain. The re- sults show that the precision of modified prediction model has improved 13.2% compared with the classical prediction model. The results reveal that the modified model can give an accurate prediction of the wrinkling amplitude.展开更多
This paper deals with the issues involved during the design of a complex gymnasium located at the new campus of Zhejiang University. The complexity comes from the gymnasium’s being of three parts: long-span membrane ...This paper deals with the issues involved during the design of a complex gymnasium located at the new campus of Zhejiang University. The complexity comes from the gymnasium’s being of three parts: long-span membrane structure, prestressed concrete structure and extraordinarily long tubular steel structure without seams. The paper first presents considera- tions of the prestress design, followed by analyses of the stress states due to temperature changes and concrete shrinkage. Buckling and postbuckling analyses were performed to determine the load-carrying capacity of the perfect and imperfect tubular steel structure of the inclined arch system, while dynamic relaxation method and general nonlinear finite element analysis were used to carry out shape-finding and stress analyses of the membrane structure respectively. Finally, collated monitoring date was applied to control the construction quality and verify the design parameters. Some useful conclusions are available at the end of the paper.展开更多
An eigenvalue method considering the membrane vibration of wrinkling out-of-plane deformation is introduced, and the stress distributing rule in membrane wrinkled area is analyzed. A dynamic analytical model of rectan...An eigenvalue method considering the membrane vibration of wrinkling out-of-plane deformation is introduced, and the stress distributing rule in membrane wrinkled area is analyzed. A dynamic analytical model of rectangular shear wrinkled membrane and its numerical analysis approach are also developed. Results indicate that the stress in wrinkled area is not uniform, i.e. it is larger in wrinkling wave peaks along wrinkles and two ends of wrinkle in vertical direction. Vibration modes of wrinkled membrane are strongly correlated with the wrinkling configurations. The rigidity is larger due to the heavier stress in the part of wrinkling wave peaks. Therefore, wave peaks are always located at the node lines of vibration mode. The vibration frequency obviously increases with the vibration of wave peaks.展开更多
To know the effects of irradiation on the konjac glucomannan (KGM) molecular chain membrane, KGM membrane solution was treated with the irradiation dose of 0-20 kGy in this study, and the structure and properties of...To know the effects of irradiation on the konjac glucomannan (KGM) molecular chain membrane, KGM membrane solution was treated with the irradiation dose of 0-20 kGy in this study, and the structure and properties of KGM membrane were analyzed with Infrared spectrum, Raman spectrum, X-ray, SEM scanning and so on. The results revealed that the effects of different irradiation doses on the KGM molecular chain structure were different. Higher irradiation dose (20 kGy) resulted in partial damage against KGM membrane crystal structure, and there was no obvious change for the amorphous structure; with membrane property test, the tensile strength of KGM membrane gradually increased with the increase of irradiation dose and its elongation at break reduced, but these changes were not significant, WVP value reduced; with SEM, the membrane surface treated with irradiation was smoother even than the membrane without treatment. In addition, when increasing the irradiation dose, membrane surface became more even, and arrangement was more orderly and compact. KGM membrane nrooerties, and it is an ideal Irradiation modification could effectively improve the modification method.展开更多
The bending stiffness of the inflated beam is considered as a constant before wrinkles appear, and it decreases obviously as wrinkles propagate. The formula of the bending stiffness is obtained based on the membrane t...The bending stiffness of the inflated beam is considered as a constant before wrinkles appear, and it decreases obviously as wrinkles propagate. The formula of the bending stiffness is obtained based on the membrane theory in this paper. Furthermore, the definition of dimensionless bending stiffness factor is presented; the relationship of bending stiffness factor and wrinkling factor is derived; the bending stiffness factor is simplified as different linear functions with wrinkling factor, and the simplified model of bending stiffness of inflated beam under bending is also obtained. The bending stiffness including expression of wrinkling factor is substituted into the deflection differential equation, and then the slope and deflection equation of the inflated beam is deduced by integrating the deflection differential equation. Finally, the load-deflection curve is obtained, which is compared with the experimental data in a previous paper. It has a good agreement with each other.展开更多
Wrinkling analysis of a rectangular membrane with a single crease under shearing is performed to understand the wrinkle-crease interaction behaviors. The crease is considered by introducing the residual stresses from ...Wrinkling analysis of a rectangular membrane with a single crease under shearing is performed to understand the wrinkle-crease interaction behaviors. The crease is considered by introducing the residual stresses from creasing and the effective modulus into the baseline configuration with assumed circular cross-sectional crease geometry. The wrinkling analysis of the creased membrane is then performed by using the direct perturb-force (DP) simulation technique which is based on our modified displacement components (MDC) method. Results reveal that the crease may influence the stress transfer path in the membrane and further change the wrinkling direction. The crease appears to improve the bending stiffness of the membrane which has an effective resistance on the wrinkling evolution. The effects of the crease orientation on wrinkle-crease interaction are studied toward the end of this paper. The results show that the wrinkling amplitude, wavelength, and direction increase as the crease orientation increases, and the wrinkling number decreases with the increasing crease orientation. These results will be of great benefit to the analysis and the control of the wrinkles in the membrane structures.展开更多
To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to t...To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to the previous method (Method I) of local coordinate transposition and stiffness equivalence.The new method is derived and the feasibility is theoretically proved.A small-scale membrane structure is analyzed by the two methods,and the results show that the computational efficiency of the new method (Method II) is approximately 23 times that of Method I.When Method II is applied to a large-scale membrane stadium structure,it is found that this new method can quickly make the second principal stress of one way wrinkled elements zero,and make the two principal stresses of two-way wrinkled elements zero as well.It could attain the correct load responses right after the appearance of wrinkled elements,which indicates that Method II can be applied to wrinkling analysis of large-scale membrane structures.展开更多
An analytical approach based on the bifurcation theory is presented,in which the wrinkles are treated as the local buckling phenomena of the elastic thin plate with little bending stiffness.The average wrinkling wavel...An analytical approach based on the bifurcation theory is presented,in which the wrinkles are treated as the local buckling phenomena of the elastic thin plate with little bending stiffness.The average wrinkling wavelength was determined by incorporating the stress field and the out-of-plane force equilibrium condition of the wrinkled membrane.The wrinkling amplitude was then obtained by associating the characteristics of wrinkling texture with the obtained wrinkling wavelength.Results reveal that the wrinkled pattern exhibits a noticeable difference when the tension load is changed gradually,and two wrinkling styles are identified.The first style occurs for symmetric and moderately asymmetric loading,and it is characterized by small,radial corner wrinkles;the second style occurs for strongly asymmetric loading and is characterized by a deep,large diagonal wrinkle.The analytical predictions on the wrinkling characteristics and the developed rules are validated against wrinkling experimental observations.展开更多
The characteristics of normal inflatable antennas are described in this paper.For its deficiency such as low stiffness,a new-style of rigid-flexible coupling inflatable antenna is introduced.The advantages and system-...The characteristics of normal inflatable antennas are described in this paper.For its deficiency such as low stiffness,a new-style of rigid-flexible coupling inflatable antenna is introduced.The advantages and system-composition are presented.Airbag is an important component,and the shape and stress distribution of airbag is important for the whole structure.Thus,shape-state analysis is performed.The uniformity of constrained force at joint between airbag and rib will impact the state of joint,or even the deployment process.Therefore,a shape optimization of airbag is developed on the base of genetic algorithms,and the best shape of airbag is finally obtained.Therefore,the stress distribution of airbags will be uniformed and the antenna structure system will be more reliability.展开更多
Stratospheric airship is a special near-space air vehicle which has lots of advantages than other traditional flying aircrafts, such as long endurance, strong survival ability, low cost, excellent resolution detector ...Stratospheric airship is a special near-space air vehicle which has lots of advantages than other traditional flying aircrafts, such as long endurance, strong survival ability, low cost, excellent resolution detector etc. In addition, the stratospheric airship can be an ideal stratospheric bearing platform. This paper firstly gave an overview describing some technical differences between the stratospheric airship and the traditional airship, including the working environment, design specifications, structure characteristics, energy system, flying modes, and so on. Some technical difficulties including the materials, power system which apply to the stratospheric airship and deformation of the huge hull, super-heating effect, and station-keeping were discussed. Furthermore, technical target, technical specifications, design concept, and overview of flying tested about two stratospheric demonstration airships which were representative achievements of the research on the stratospheric airship in China were introduced. Finally, the predictions about the progress and direction of development were discussed.展开更多
The Epstein-Barr virus membrane antigen was constructed and inserted into vaccinia virus, Tian-tan strain in order to study the effect of this virus on EB infection and tumorogenesis. The EBV-derived membrane antigen ...The Epstein-Barr virus membrane antigen was constructed and inserted into vaccinia virus, Tian-tan strain in order to study the effect of this virus on EB infection and tumorogenesis. The EBV-derived membrane antigen was expressed under the control of a 7.5 K promoter of vaccinia virus. The antibody against the membrane antigen of EB virus was produced on rabbits vaccinated with recombinant vaccinia virus.展开更多
基金National Natural Science Foundation of China Under Grant No. 50725826, 90815021
文摘The interaction between membrane structures and their environment can be either static or dynamic. Static interaction refers to interaction with static air, while dynamic interaction refers to wind and its effects. They can be evaluated by two parameters, added mass and radiation/aerodynamic damping, which are experimentally investigated in this study. The study includes the effects of both the static and dynamic interaction on structural dynamic characteristics, and the relationship between the interaction parameters and the covered area of a membrane structure for the static interaction and the relationship between the interaction parameters and wind direction and speed for the dynamic interaction. Experimental data show that the dynamic interaction is strongly correlated with the structural modes, i.e., the interaction of the symmetric modes is much larger than the anti-synmletric modes; and the influence of the dynamic interaction is significant in wind-induced response analysis and cannot be ignored. In addition, it is concluded that the structural natural frequency is remarkably decreased by this interaction, and the frequency band is significantly broadened.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50608022)
文摘A multi-objective optimization method based on Pareto Genetic Algorithm is presented for shape design of membrane structures from a structural view point.Several non-dimensional variables are defined as optimization variables,which are decision factors of shapes of membrane structures.Three objectives are proposed including maximization of stiffness,maximum uniformity of stress and minimum reaction under external loads.Pareto Multi-objective Genetic Algorithm is introduced to solve the Pareto solutions.Consequently,the dependence of the optimality upon the optimization variables is derived to provide guidelines on how to determine design parameters.Moreover,several examples illustrate the proposed methods and applications.The study shows that the multi-objective optimization method in this paper is feasible and efficient for membrane structures;the research on Pareto solutions can provide explicit and useful guidelines for shape design of membrane structures.
文摘In routine design of tensioned membrane structures, the membrane is generally modeled using space membrane elements and the cables by space cable elements, with no sliding allowed between the membrane and the cables. On the other hand, large deflections are expected and sliding between the membrane and the cables is inevitable. In the present paper, the general finite element code ABAQUS was employed to investigate the influence of cable sliding on membrane surface on the structural behavior. Three analysis models were devised to fulfill this purpose: (1) The membrane element shares nodes with the cable element; (2) The cable can slide on the membrane surface freely (without friction) and (3) The cable can slide on the membrane surface, but with friction between the cable and the membrane. The sliding problem is modeled using a surface - based contact algorithm. The results from three analysis models are compared, showing that cable sliding has only little influence on the structure shape and on the stress distributions in the membrane. The main influence of cable sliding may be its effect on the dynamic behavior of tensioned membrane structures.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50338010).
文摘Conical membrane structures are a typical form of tensile membrane structures. In the past, most studies focused on the static performance, but few on dynamic performance. In this paper, systematic parameter analysis of wind-induced response of conical membrane structures has been performed with nonlinear random simulation method in a time domain, by considering some parameters, such as span, rise-span ratio, prestress of membrane, and characteristic of the approaching wind flow. Moreover, formulas of the dynamic coefficient and nonlinear adjustment factor are advised, which can be conveniently used in wind-resistant design of conical membrane structures.
基金Project(12 High-tech Urban C22)supported by High-tech Urban Development Program,Ministry of Land,Transport and Moritime Affairs of Korea
文摘Practical techniques for smooth geodesic patterning of membrane structures were investigated.For the geodesic search,adjustment of the subplane of the extracted elements series was proposed,and various spline approximation methods were used to flatten the strip for the generation of a smooth pattern.This search approach is very simple,and the geodesic line could be easily attained by the proposed method without the need for a difficult computation method.Smooth cutting patterning can also be generated by spline approximation without the noise in discrete nodal information.Additionally,the geodesic cutting pattern saved about 21%of the required area for the catenary model due to the reduction of the curvature of the planar pattern seam line.
文摘The purpose of this paper is to demonstrate and investigate the concepts of new deployable boom systems, which consist of the BCON (braid coated bi-convex tape) boom and the SMA-BCON (braid coated bi-shape memory alloy convex tape) boom. Both booms are developed for the deployable membrane structures such as solar sails, thin membrane solar array panels, deorbit mechanisms for small satellites and reflectors of space solar power satellite, etc. BCON booms can store around polygonal or cylindrical center hub, and the booms can deploy by the stepwise manner by releasing a constraint mechanism which pins the boons into two or three points for the total length. SMA-BCON booms are mainly developed for a square center body systems, and SMA is adapted on the bent po^nts of the booms where stored around each edge of the center hub. Through the deployment experiments of both booms, the stepwise deployment behavior and its tendency are obtained. The design concept of BCON boom and SMA-BCON hnnm i~ demonstrated through this study.
文摘By the optimum theory, a new cutting analytical method of the membrane structure is developed. The B-spline curve is applied to make smooth the boundary of the membrane strip. By this method, the cutting accuracy is improved. Finally, a cutting analysis example of a tension membrane structure is given.
文摘Changes in the surface structure of cell membrane and the contents of membrane pro- teins and nuclear DNA of human gastric cancer (BGC-823) cells treated with organotin compound (Et_2SnCl_2phen) were studied with a scanning electron microscope (SEM),a scanning tunneling,micro- scope (STM),and a cytofluorophotometer.It was found that Et_2SnCl_2Phen not only inhibited the cell growth but also remarkably changed the surface structure of the membrane of cancer cells.The surface of Et_2SnCl_2phen treated cancer cells was relatively smooth and showed fewer microvilli under SEM. STM images showed an uneven and loose distribution of the surface of the cell.In comparison with the untreated cancer cells,there was an evident decrease in the content of membrane proteins and nuclear DNA in Et_2SnCl_2phen treated cells.
文摘Microporous membranes of low-high density polyethylene and their blends were prepared bythermally-induced phase separation of polymer/long-aliphatic chain alcohol (diluent) mixtures.The microstructures of this particular membrane, which depends on the diluent properties,polymer concentration and cooling rate, were observed by scanning electron microscopy.'Beehive-type,'leafy-like, and lacy porous structure morphologies can be formed,depending onthe blend composition and phase separation conditions, which were discussed by the polymer anddiluent crystallization processes.
基金supported by the National Natural Science Foundation of China(11172079)the Program for New Century Excellent Talents in University(NCET-11-0807)+2 种基金the Fundamental Research Funds for the Central Universities(HIT.BRETIII.201209 and HIT.NSRIF.201156)Aeronautical Science Foundation of China(2013ZA77001)Open-End Fund of National Key Laboratory of Science and Technology on Advanced Composites in Special Environments
文摘Prediction of wrinkling characteristics is strongly correlated with the strain perpendicular to wrinkling direc- tion. In this paper, the strain field of wrinkled membrane is tested by VIC-3D system based on the digital image correlation technique. Experimental results are validated by the tension wrinkling simulation. The experimental strain perpendicular to wrinkling direction is analyzed in depth. The wrinkling strain of a square wrinkled membrane under corner tension is extracted from experimental strain perpendicular to wrinkling direction. A quantitative characterization format of the experimental wrinkling strain is proposed. A modified prediction method of wrinkling amplitude is presented based on the experimental wrinkling strain. The re- sults show that the precision of modified prediction model has improved 13.2% compared with the classical prediction model. The results reveal that the modified model can give an accurate prediction of the wrinkling amplitude.
基金Project (No. 59908011) supported by the National Natural ScienceFoundation of China
文摘This paper deals with the issues involved during the design of a complex gymnasium located at the new campus of Zhejiang University. The complexity comes from the gymnasium’s being of three parts: long-span membrane structure, prestressed concrete structure and extraordinarily long tubular steel structure without seams. The paper first presents considera- tions of the prestress design, followed by analyses of the stress states due to temperature changes and concrete shrinkage. Buckling and postbuckling analyses were performed to determine the load-carrying capacity of the perfect and imperfect tubular steel structure of the inclined arch system, while dynamic relaxation method and general nonlinear finite element analysis were used to carry out shape-finding and stress analyses of the membrane structure respectively. Finally, collated monitoring date was applied to control the construction quality and verify the design parameters. Some useful conclusions are available at the end of the paper.
文摘An eigenvalue method considering the membrane vibration of wrinkling out-of-plane deformation is introduced, and the stress distributing rule in membrane wrinkled area is analyzed. A dynamic analytical model of rectangular shear wrinkled membrane and its numerical analysis approach are also developed. Results indicate that the stress in wrinkled area is not uniform, i.e. it is larger in wrinkling wave peaks along wrinkles and two ends of wrinkle in vertical direction. Vibration modes of wrinkled membrane are strongly correlated with the wrinkling configurations. The rigidity is larger due to the heavier stress in the part of wrinkling wave peaks. Therefore, wave peaks are always located at the node lines of vibration mode. The vibration frequency obviously increases with the vibration of wave peaks.
基金supported by the National Natural Science Foundation of China(30871749,30901004 and 31071518)the Natural Science Foundation of Fujian Province(2011J01285)+3 种基金the Key Research Project of Guangdong Province(2010B080701079)the doctoral program of higher education of the specialized research fund for the project funded by the United(20113515110010)the Yangcheng Scholars Technology Project of Guangzhou(10B005D)the Fuzhou Science and Technology Plan Project(2011-N-44)
文摘To know the effects of irradiation on the konjac glucomannan (KGM) molecular chain membrane, KGM membrane solution was treated with the irradiation dose of 0-20 kGy in this study, and the structure and properties of KGM membrane were analyzed with Infrared spectrum, Raman spectrum, X-ray, SEM scanning and so on. The results revealed that the effects of different irradiation doses on the KGM molecular chain structure were different. Higher irradiation dose (20 kGy) resulted in partial damage against KGM membrane crystal structure, and there was no obvious change for the amorphous structure; with membrane property test, the tensile strength of KGM membrane gradually increased with the increase of irradiation dose and its elongation at break reduced, but these changes were not significant, WVP value reduced; with SEM, the membrane surface treated with irradiation was smoother even than the membrane without treatment. In addition, when increasing the irradiation dose, membrane surface became more even, and arrangement was more orderly and compact. KGM membrane nrooerties, and it is an ideal Irradiation modification could effectively improve the modification method.
基金Sponsored by the Program for New Century Excellent Talents in University (Grant No. NCET-08-0150)
文摘The bending stiffness of the inflated beam is considered as a constant before wrinkles appear, and it decreases obviously as wrinkles propagate. The formula of the bending stiffness is obtained based on the membrane theory in this paper. Furthermore, the definition of dimensionless bending stiffness factor is presented; the relationship of bending stiffness factor and wrinkling factor is derived; the bending stiffness factor is simplified as different linear functions with wrinkling factor, and the simplified model of bending stiffness of inflated beam under bending is also obtained. The bending stiffness including expression of wrinkling factor is substituted into the deflection differential equation, and then the slope and deflection equation of the inflated beam is deduced by integrating the deflection differential equation. Finally, the load-deflection curve is obtained, which is compared with the experimental data in a previous paper. It has a good agreement with each other.
基金supported by the National Natural Science Foundation of China (10902027)the Specialized Research Fund for the Doctoral Program of Higher Education of China (200802131046)+1 种基金Aeronautical Science Foundation of China (2010ZA77001)the Fundamental Research Funds for the Central Universities(HIT.NSRIF.201156)
文摘Wrinkling analysis of a rectangular membrane with a single crease under shearing is performed to understand the wrinkle-crease interaction behaviors. The crease is considered by introducing the residual stresses from creasing and the effective modulus into the baseline configuration with assumed circular cross-sectional crease geometry. The wrinkling analysis of the creased membrane is then performed by using the direct perturb-force (DP) simulation technique which is based on our modified displacement components (MDC) method. Results reveal that the crease may influence the stress transfer path in the membrane and further change the wrinkling direction. The crease appears to improve the bending stiffness of the membrane which has an effective resistance on the wrinkling evolution. The effects of the crease orientation on wrinkle-crease interaction are studied toward the end of this paper. The results show that the wrinkling amplitude, wavelength, and direction increase as the crease orientation increases, and the wrinkling number decreases with the increasing crease orientation. These results will be of great benefit to the analysis and the control of the wrinkles in the membrane structures.
基金Project(020940) supported by the Natural Science Foundation of Guangdong Province,China
文摘To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to the previous method (Method I) of local coordinate transposition and stiffness equivalence.The new method is derived and the feasibility is theoretically proved.A small-scale membrane structure is analyzed by the two methods,and the results show that the computational efficiency of the new method (Method II) is approximately 23 times that of Method I.When Method II is applied to a large-scale membrane stadium structure,it is found that this new method can quickly make the second principal stress of one way wrinkled elements zero,and make the two principal stresses of two-way wrinkled elements zero as well.It could attain the correct load responses right after the appearance of wrinkled elements,which indicates that Method II can be applied to wrinkling analysis of large-scale membrane structures.
基金the Postdoctoral Science Foundation of China(Grant No.20070420163)the Development Program for Outstanding Young Teachers in Harbin Institute of Technology(Grant No.HITQNJS.2008.004)
文摘An analytical approach based on the bifurcation theory is presented,in which the wrinkles are treated as the local buckling phenomena of the elastic thin plate with little bending stiffness.The average wrinkling wavelength was determined by incorporating the stress field and the out-of-plane force equilibrium condition of the wrinkled membrane.The wrinkling amplitude was then obtained by associating the characteristics of wrinkling texture with the obtained wrinkling wavelength.Results reveal that the wrinkled pattern exhibits a noticeable difference when the tension load is changed gradually,and two wrinkling styles are identified.The first style occurs for symmetric and moderately asymmetric loading,and it is characterized by small,radial corner wrinkles;the second style occurs for strongly asymmetric loading and is characterized by a deep,large diagonal wrinkle.The analytical predictions on the wrinkling characteristics and the developed rules are validated against wrinkling experimental observations.
基金Sponsored by the Program for New Century Excellent Talents in University(Grant No. NCET-08-0150)
文摘The characteristics of normal inflatable antennas are described in this paper.For its deficiency such as low stiffness,a new-style of rigid-flexible coupling inflatable antenna is introduced.The advantages and system-composition are presented.Airbag is an important component,and the shape and stress distribution of airbag is important for the whole structure.Thus,shape-state analysis is performed.The uniformity of constrained force at joint between airbag and rib will impact the state of joint,or even the deployment process.Therefore,a shape optimization of airbag is developed on the base of genetic algorithms,and the best shape of airbag is finally obtained.Therefore,the stress distribution of airbags will be uniformed and the antenna structure system will be more reliability.
文摘Stratospheric airship is a special near-space air vehicle which has lots of advantages than other traditional flying aircrafts, such as long endurance, strong survival ability, low cost, excellent resolution detector etc. In addition, the stratospheric airship can be an ideal stratospheric bearing platform. This paper firstly gave an overview describing some technical differences between the stratospheric airship and the traditional airship, including the working environment, design specifications, structure characteristics, energy system, flying modes, and so on. Some technical difficulties including the materials, power system which apply to the stratospheric airship and deformation of the huge hull, super-heating effect, and station-keeping were discussed. Furthermore, technical target, technical specifications, design concept, and overview of flying tested about two stratospheric demonstration airships which were representative achievements of the research on the stratospheric airship in China were introduced. Finally, the predictions about the progress and direction of development were discussed.
文摘The Epstein-Barr virus membrane antigen was constructed and inserted into vaccinia virus, Tian-tan strain in order to study the effect of this virus on EB infection and tumorogenesis. The EBV-derived membrane antigen was expressed under the control of a 7.5 K promoter of vaccinia virus. The antibody against the membrane antigen of EB virus was produced on rabbits vaccinated with recombinant vaccinia virus.