Personality distinguishes individuals’ patterns of feeling, thinking,and behaving. Predicting personality from small video series is an excitingresearch area in computer vision. The majority of the existing research ...Personality distinguishes individuals’ patterns of feeling, thinking,and behaving. Predicting personality from small video series is an excitingresearch area in computer vision. The majority of the existing research concludespreliminary results to get immense knowledge from visual and Audio(sound) modality. To overcome the deficiency, we proposed the Deep BimodalFusion (DBF) approach to predict five traits of personality-agreeableness,extraversion, openness, conscientiousness and neuroticism. In the proposedframework, regarding visual modality, the modified convolution neural networks(CNN), more specifically Descriptor Aggregator Model (DAN) areused to attain significant visual modality. The proposed model extracts audiorepresentations for greater efficiency to construct the long short-termmemory(LSTM) for the audio modality. Moreover, employing modality-based neuralnetworks allows this framework to independently determine the traits beforecombining them with weighted fusion to achieve a conclusive prediction of thegiven traits. The proposed approach attains the optimal mean accuracy score,which is 0.9183. It is achieved based on the average of five personality traitsand is thus better than previously proposed frameworks.展开更多
文摘Personality distinguishes individuals’ patterns of feeling, thinking,and behaving. Predicting personality from small video series is an excitingresearch area in computer vision. The majority of the existing research concludespreliminary results to get immense knowledge from visual and Audio(sound) modality. To overcome the deficiency, we proposed the Deep BimodalFusion (DBF) approach to predict five traits of personality-agreeableness,extraversion, openness, conscientiousness and neuroticism. In the proposedframework, regarding visual modality, the modified convolution neural networks(CNN), more specifically Descriptor Aggregator Model (DAN) areused to attain significant visual modality. The proposed model extracts audiorepresentations for greater efficiency to construct the long short-termmemory(LSTM) for the audio modality. Moreover, employing modality-based neuralnetworks allows this framework to independently determine the traits beforecombining them with weighted fusion to achieve a conclusive prediction of thegiven traits. The proposed approach attains the optimal mean accuracy score,which is 0.9183. It is achieved based on the average of five personality traitsand is thus better than previously proposed frameworks.