Orthotopic liver transplantation(OLT)is the only proven effective treatment for both end-stage and metabolic liver diseases.Hepatocyte transplantation is a promising alternative for OLT,but the lack of available donor...Orthotopic liver transplantation(OLT)is the only proven effective treatment for both end-stage and metabolic liver diseases.Hepatocyte transplantation is a promising alternative for OLT,but the lack of available donor livers has hampered its clinical application.Hepatocyte-like cells(HLCs)differentiated from many multi-potential stem cells can help repair damaged liver tissue.Yet almost suitable cells currently identified for human use are difficult to harvest and involve invasive procedures.Recently,a novel mesenchymal stem cell derived from human menstrual blood(MenSC)has been discovered and obtained easily and repeatedly.In this study,we examined whether the MenSCs are able to differentiate into functional HLCs in vitro.After three weeks of incubation in hepatogenic differentiation medium containing hepatocyte growth factor(HGF),fibroblast growth factor-4(FGF-4),and oncostain M(OSM),cuboidal HLCs were observed,and cells also expressed hepatocyte-specific marker genes including albumin(ALB),α-fetoprotein(AFP),cytokeratin 18/19(CK18/19),and cytochrome P450 1A1/3A4(CYP1A1/3A4).Differentiated cells further demonstrated in vitro mature hepatocyte functions such as urea synthesis,glycogen storage,and indocyanine green(ICG)uptake.After intrasplenic transplantation into mice with 2/3 partial hepatectomy,the MenSC-derived HLCs were detected in recipient livers and expressed human ALB protein.We also showed that MenSC-derived HLC transplantation could restore the serum ALB level and significantly suppressed transaminase activity of liver injury animals.In conclusion,MenSCs may serve as an ideal,easily accessible source of material for tissue engineering and cell therapy of liver tissues.展开更多
Stem cells can be obtained from women's menstrual blood derived from the endometrium.The cells display stem cell markers such as Oct-4,SSEA-4,Nanog,and c-kit(CD117),and have the potent ability to differentiate int...Stem cells can be obtained from women's menstrual blood derived from the endometrium.The cells display stem cell markers such as Oct-4,SSEA-4,Nanog,and c-kit(CD117),and have the potent ability to differentiate into various cell types,including the heart,nerve,bone,cartilage,and fat.There has been no evidence of teratoma,ectopic formation,or any immune response after transplantation into an animal model.These cells quickly regenerate after menstruation and secrete many growth factors to display recurrent angiogenesis.The plasticity and safety of the acquired cells have been demonstrated in many studies.Menstrual blood-derived stem cells(MenSCs) provide an alternative source of adult stem cells for research and application in regenerative medicine.Here we summarize the multipotent properties and the plasticities of MenSCs and other endometrial stem cells from recent studies conducted both in vitro and in vivo.展开更多
基金Project supported by the National High-Tech R&D Program(863) of China(Nos.2011AA020102 and 2012AA020905)the Key Technologies R&D Program of Zhejiang Province(Nos.2012C13015-2and 2011C13029-1)+1 种基金the Hangzhou Key Technologies R&D Program(No.20122513A49)the National Natural Science Foundation of China(Nos.81201783 and 81201089)
文摘Orthotopic liver transplantation(OLT)is the only proven effective treatment for both end-stage and metabolic liver diseases.Hepatocyte transplantation is a promising alternative for OLT,but the lack of available donor livers has hampered its clinical application.Hepatocyte-like cells(HLCs)differentiated from many multi-potential stem cells can help repair damaged liver tissue.Yet almost suitable cells currently identified for human use are difficult to harvest and involve invasive procedures.Recently,a novel mesenchymal stem cell derived from human menstrual blood(MenSC)has been discovered and obtained easily and repeatedly.In this study,we examined whether the MenSCs are able to differentiate into functional HLCs in vitro.After three weeks of incubation in hepatogenic differentiation medium containing hepatocyte growth factor(HGF),fibroblast growth factor-4(FGF-4),and oncostain M(OSM),cuboidal HLCs were observed,and cells also expressed hepatocyte-specific marker genes including albumin(ALB),α-fetoprotein(AFP),cytokeratin 18/19(CK18/19),and cytochrome P450 1A1/3A4(CYP1A1/3A4).Differentiated cells further demonstrated in vitro mature hepatocyte functions such as urea synthesis,glycogen storage,and indocyanine green(ICG)uptake.After intrasplenic transplantation into mice with 2/3 partial hepatectomy,the MenSC-derived HLCs were detected in recipient livers and expressed human ALB protein.We also showed that MenSC-derived HLC transplantation could restore the serum ALB level and significantly suppressed transaminase activity of liver injury animals.In conclusion,MenSCs may serve as an ideal,easily accessible source of material for tissue engineering and cell therapy of liver tissues.
基金Project supported by the National Science and Technology Major Project of China (No. 2008ZX10002-009)the National Basic Research Program (973) of China (No. 2007CB513001)
文摘Stem cells can be obtained from women's menstrual blood derived from the endometrium.The cells display stem cell markers such as Oct-4,SSEA-4,Nanog,and c-kit(CD117),and have the potent ability to differentiate into various cell types,including the heart,nerve,bone,cartilage,and fat.There has been no evidence of teratoma,ectopic formation,or any immune response after transplantation into an animal model.These cells quickly regenerate after menstruation and secrete many growth factors to display recurrent angiogenesis.The plasticity and safety of the acquired cells have been demonstrated in many studies.Menstrual blood-derived stem cells(MenSCs) provide an alternative source of adult stem cells for research and application in regenerative medicine.Here we summarize the multipotent properties and the plasticities of MenSCs and other endometrial stem cells from recent studies conducted both in vitro and in vivo.