In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate cri...In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate critical points of the potential function V(x),where a,b>0,1<p<5 are constants,andε>0 is a parameter.Applying the Lyapunov-Schmidt reduction method and a local Pohozaev type identity,we establish the existence and local uniqueness results of multi-peak solutions,which concentrate at{a_(i)}1≤i≤k,where{a_(i)}1≤i≤k are non-degenerate critical points of V(x)asε→0.展开更多
In this article, we deal with the uniqueness problems on meromorphic functions sharing two finite sets in an angular domain instead of the whole plane C. In particular, we investigate the uniqueness for meromorphic fu...In this article, we deal with the uniqueness problems on meromorphic functions sharing two finite sets in an angular domain instead of the whole plane C. In particular, we investigate the uniqueness for meromorphic functions of infinite order in an angular domain and obtain some results. Moreover, examples show that the conditions in theorems are necessary.展开更多
In this paper, the uniqueness of meromorphic functions with common range sets and deficient values are studied. This result is related to a question of Gross.
We study the uniqueness of entire functions and prove the following theorem: Let f(z) and g(z) be two nonconstant entire functions; n and k two positive integers with n>2k+4. If the zeros of both f(z) and g(z) are ...We study the uniqueness of entire functions and prove the following theorem: Let f(z) and g(z) be two nonconstant entire functions; n and k two positive integers with n>2k+4. If the zeros of both f(z) and g(z) are of multiplicity at least n, and f (k)(z) and g (k)(z) share 1 CM, then either f(z)=c 1e cz, g(z)= c 2e -cz, where c 1, c 2 and c are three constants satisfying (-1) kc 1c 2c 2k= 1, or f(z)≡g(z).展开更多
In this paper, the uniqueness problems on meromorphic function f(z) of zero order sharing values with their q-shift f(qz + c) are studied. It is shown that if f(z) and f(qz + c) share one values CM and IM respectively...In this paper, the uniqueness problems on meromorphic function f(z) of zero order sharing values with their q-shift f(qz + c) are studied. It is shown that if f(z) and f(qz + c) share one values CM and IM respectively, or share four values partially, then they are identical under an appropriate deficiency assumption.展开更多
In this paper, we deal with the uniqueness problems on entire and meromorphic functions con- cerning differential polynomials that share fixed-points. Moreover, we generalise and improve some results of Weichuan Lin, ...In this paper, we deal with the uniqueness problems on entire and meromorphic functions con- cerning differential polynomials that share fixed-points. Moreover, we generalise and improve some results of Weichuan Lin, Hongxun Yi, Meng Chao, C. Y. Fang, M. L. Fang and Junfeng xu.展开更多
In this paper, we mainly study the uniqueness of specific q-shift difference polynomials and of meromorphic functions, which share a common small function and get the corresponding results. In addition, we also invest...In this paper, we mainly study the uniqueness of specific q-shift difference polynomials and of meromorphic functions, which share a common small function and get the corresponding results. In addition, we also investigate the problem of value distribution on q-shift difference polynomials of entire functions.展开更多
In this article,we discuss,by Nevanlinna theory,the influence of multiple values and deficiencies on the uniqueness problem of algebroid functions.We get several uniqueness theorems of algebroid functions which includ...In this article,we discuss,by Nevanlinna theory,the influence of multiple values and deficiencies on the uniqueness problem of algebroid functions.We get several uniqueness theorems of algebroid functions which include an at most 3v-valued theorem.These results extend the existing achievements of some scholars.展开更多
In this paper, we study the uniqueness problems of entire and meromorphic functions concerning differential polynomials sharing fixed point and obtain some results which generalize the results due to Subhas S. Bhoosnu...In this paper, we study the uniqueness problems of entire and meromorphic functions concerning differential polynomials sharing fixed point and obtain some results which generalize the results due to Subhas S. Bhoosnurmath and Veena L. Pujari [1].展开更多
A problem of meromorphic functions that share two values is discussed, and two results recently obtained respectively by Yi H. X. and Song G. D. & Li N. are improved.
In this paper, we prove the existence and uniqueness of positive periodic solutions for first-order functional differential equation y'(t) = α(t)y(t) + f(t, y(t -τ-(t))) + g(t)by using two fixed poi...In this paper, we prove the existence and uniqueness of positive periodic solutions for first-order functional differential equation y'(t) = α(t)y(t) + f(t, y(t -τ-(t))) + g(t)by using two fixed point theorems of general α-concave operators and homogeneous operators in ordered Banach spaces.展开更多
In this paper, by using the contraction mapping principle and constructing a suitable Lyapunov functional, we established a set of easily applicable criteria for the existence, uniqueness and global attractivity of po...In this paper, by using the contraction mapping principle and constructing a suitable Lyapunov functional, we established a set of easily applicable criteria for the existence, uniqueness and global attractivity of positive periodic solution and positive almost periodic solution of a neutral multi-species Logarithmic population model with multiple delays and impulses. The results improve and generalize the known ones in [1], as an application, we also give an example to illustrate the feasibility of our main results.展开更多
For the open question 'If two nonconstant meromorphic functions share three values IM and share a fourth value CM, then do the functions necessarily share all four values CM?', the author studies the case when...For the open question 'If two nonconstant meromorphic functions share three values IM and share a fourth value CM, then do the functions necessarily share all four values CM?', the author studies the case when four values are shared IM and their counting functions satisfy an additional condition. The author obtains some results which answer this question partially.展开更多
We deal with the problem of entire functions sharing one value weakly. Moreover, we improve and generalize some former results obtained by J.-F.Chen, et al. [6], Y.Xu and H.L.Qiu [4], M.L. Fang [5], C.C. Yang, and X.H...We deal with the problem of entire functions sharing one value weakly. Moreover, we improve and generalize some former results obtained by J.-F.Chen, et al. [6], Y.Xu and H.L.Qiu [4], M.L. Fang [5], C.C. Yang, and X.H. Hua [3].展开更多
In this paper we study the uniqueness of certain meromorphic functions. It is shown that any two nonconstant meromorphic functions of order less than one, that share four values IM or six values SCM, must be identical...In this paper we study the uniqueness of certain meromorphic functions. It is shown that any two nonconstant meromorphic functions of order less than one, that share four values IM or six values SCM, must be identical. As a consequence, a result due to W. W. Adams and E. G. Straus is generalized.展开更多
In this paper, we prove the following result: Let f(z) be a transcendental entire function, Q(z) ≡ 0 be a small function of f(z), and n ≥ 2 be a positive integer. If fn(z) and(fn(z)) share Q(z) CM, th...In this paper, we prove the following result: Let f(z) be a transcendental entire function, Q(z) ≡ 0 be a small function of f(z), and n ≥ 2 be a positive integer. If fn(z) and(fn(z)) share Q(z) CM, then f(z) = ce 1 nz, where c is a nonzero constant. This result extends Lv's result from the case of polynomial to small entire function.展开更多
In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article i...In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article improve Theorem 1 of Yang and Hua [26], and improve Theorem 1 of Fang and Qiu [6].展开更多
This paper investigate the uniqueness problems for meromorphic functions that share three values CM and proves a uniqueness theorem on this topic which can be used to improve some previous related results.
In this paper, the uniqueness of algebroidal functions in the unit disc is investigated. Suppose that W(z) and M(z) are v-valued and k-valued algebroidal functions in the unit disc, respectively. Let e^iθ be a b-...In this paper, the uniqueness of algebroidal functions in the unit disc is investigated. Suppose that W(z) and M(z) are v-valued and k-valued algebroidal functions in the unit disc, respectively. Let e^iθ be a b-cluster point of order co or order ρ(x) of the algebroidal function W(z) or M(z). It is shown that if -↑E(aj, W(z)) = -↑E(aj,M(z)) holds in the domain {|z| 〈 1}∩Ω(θ-δ,θ+δ), where b, aj (j = 1,…, 2v + 2k + 1) are complex constants, then W(z) = M(z). The same results are obtained for the case that e^iθ is a Borel point of order co or order ρ(x) of the algebroidal function W(z) or M(z).展开更多
基金supported by the Natural Science Foundation of China(11771166,12071169)the Hubei Key Laboratory of Mathematical Sciences and Program for Changjiang Scholars and Innovative Research Team in University#IRT17R46。
文摘In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate critical points of the potential function V(x),where a,b>0,1<p<5 are constants,andε>0 is a parameter.Applying the Lyapunov-Schmidt reduction method and a local Pohozaev type identity,we establish the existence and local uniqueness results of multi-peak solutions,which concentrate at{a_(i)}1≤i≤k,where{a_(i)}1≤i≤k are non-degenerate critical points of V(x)asε→0.
基金Supported by the NNSFC (10671109)the NSFFC(2008J0190)+1 种基金the Research Fund for Talent Introduction of Ningde Teachers College (2009Y019)the Scitific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘In this article, we deal with the uniqueness problems on meromorphic functions sharing two finite sets in an angular domain instead of the whole plane C. In particular, we investigate the uniqueness for meromorphic functions of infinite order in an angular domain and obtain some results. Moreover, examples show that the conditions in theorems are necessary.
文摘In this paper, the uniqueness of meromorphic functions with common range sets and deficient values are studied. This result is related to a question of Gross.
文摘We study the uniqueness of entire functions and prove the following theorem: Let f(z) and g(z) be two nonconstant entire functions; n and k two positive integers with n>2k+4. If the zeros of both f(z) and g(z) are of multiplicity at least n, and f (k)(z) and g (k)(z) share 1 CM, then either f(z)=c 1e cz, g(z)= c 2e -cz, where c 1, c 2 and c are three constants satisfying (-1) kc 1c 2c 2k= 1, or f(z)≡g(z).
基金Supported by the National Natural Science Foundation of China(11661044)
文摘In this paper, the uniqueness problems on meromorphic function f(z) of zero order sharing values with their q-shift f(qz + c) are studied. It is shown that if f(z) and f(qz + c) share one values CM and IM respectively, or share four values partially, then they are identical under an appropriate deficiency assumption.
文摘In this paper, we deal with the uniqueness problems on entire and meromorphic functions con- cerning differential polynomials that share fixed-points. Moreover, we generalise and improve some results of Weichuan Lin, Hongxun Yi, Meng Chao, C. Y. Fang, M. L. Fang and Junfeng xu.
文摘In this paper, we mainly study the uniqueness of specific q-shift difference polynomials and of meromorphic functions, which share a common small function and get the corresponding results. In addition, we also investigate the problem of value distribution on q-shift difference polynomials of entire functions.
基金supported by the Natural Science Foundation of China(11871108)Teacher Research Capacity Promotion Program of Beijing Normal University Zhuhai+2 种基金Guangdong Natural Science Foundation(2018A030313954)Guangdong Universities(Basic Research and Applied Research)Major Project(2017KZDXM038)Guangdong Provincical Anti-monopoly Law Enforcement and Big Data Analysis Research Center Project(2019D04)。
文摘In this article,we discuss,by Nevanlinna theory,the influence of multiple values and deficiencies on the uniqueness problem of algebroid functions.We get several uniqueness theorems of algebroid functions which include an at most 3v-valued theorem.These results extend the existing achievements of some scholars.
文摘In this paper, we study the uniqueness problems of entire and meromorphic functions concerning differential polynomials sharing fixed point and obtain some results which generalize the results due to Subhas S. Bhoosnurmath and Veena L. Pujari [1].
基金The NNSF (19871050) of China and the Doctoral Programme Foundation (98042209) of Higher Education.
文摘A problem of meromorphic functions that share two values is discussed, and two results recently obtained respectively by Yi H. X. and Song G. D. & Li N. are improved.
基金Supported by the Youth Science Foundation of China(l1201272) Supported by the Youth Science Foundatioa of Shanxi Province(2010021002-1)
文摘In this paper, we prove the existence and uniqueness of positive periodic solutions for first-order functional differential equation y'(t) = α(t)y(t) + f(t, y(t -τ-(t))) + g(t)by using two fixed point theorems of general α-concave operators and homogeneous operators in ordered Banach spaces.
文摘In this paper, by using the contraction mapping principle and constructing a suitable Lyapunov functional, we established a set of easily applicable criteria for the existence, uniqueness and global attractivity of positive periodic solution and positive almost periodic solution of a neutral multi-species Logarithmic population model with multiple delays and impulses. The results improve and generalize the known ones in [1], as an application, we also give an example to illustrate the feasibility of our main results.
文摘For the open question 'If two nonconstant meromorphic functions share three values IM and share a fourth value CM, then do the functions necessarily share all four values CM?', the author studies the case when four values are shared IM and their counting functions satisfy an additional condition. The author obtains some results which answer this question partially.
基金supported by NSF of Fujian Province,China(S0750013),supported by NSF of Fujian Province,China(2008J0190)the Research Foundation of Ningde Normal University(2008J001)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘We deal with the problem of entire functions sharing one value weakly. Moreover, we improve and generalize some former results obtained by J.-F.Chen, et al. [6], Y.Xu and H.L.Qiu [4], M.L. Fang [5], C.C. Yang, and X.H. Hua [3].
文摘In this paper we study the uniqueness of certain meromorphic functions. It is shown that any two nonconstant meromorphic functions of order less than one, that share four values IM or six values SCM, must be identical. As a consequence, a result due to W. W. Adams and E. G. Straus is generalized.
基金Supported by the Fundamental Research Funds for the Central Universities(Grant No.2011QNA25)National Natural Science Foundation of China(Grant No.11271179)
文摘In this paper, we prove the following result: Let f(z) be a transcendental entire function, Q(z) ≡ 0 be a small function of f(z), and n ≥ 2 be a positive integer. If fn(z) and(fn(z)) share Q(z) CM, then f(z) = ce 1 nz, where c is a nonzero constant. This result extends Lv's result from the case of polynomial to small entire function.
基金supported by the NSFC(11171184)the NSF of Shandong Province,China(Z2008A01)
文摘In this article, we study the uniqueness question of nonconstant meromorphic functions whose nonlinear differential polynomials share 1 or have the same fixed points in an angular domain. The results in this article improve Theorem 1 of Yang and Hua [26], and improve Theorem 1 of Fang and Qiu [6].
基金Supported by the NSF of China(10371065)Supported by the NSF of Zhejiang Province (M103006)
文摘This paper investigate the uniqueness problems for meromorphic functions that share three values CM and proves a uniqueness theorem on this topic which can be used to improve some previous related results.
基金The NSF (10471048) of Chinathe Research Fund (20050574002) for the DoctoralProgram of Higher Education
文摘In this paper, the uniqueness of algebroidal functions in the unit disc is investigated. Suppose that W(z) and M(z) are v-valued and k-valued algebroidal functions in the unit disc, respectively. Let e^iθ be a b-cluster point of order co or order ρ(x) of the algebroidal function W(z) or M(z). It is shown that if -↑E(aj, W(z)) = -↑E(aj,M(z)) holds in the domain {|z| 〈 1}∩Ω(θ-δ,θ+δ), where b, aj (j = 1,…, 2v + 2k + 1) are complex constants, then W(z) = M(z). The same results are obtained for the case that e^iθ is a Borel point of order co or order ρ(x) of the algebroidal function W(z) or M(z).