期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A wave energy resource assessment in the China's seas based on multi-satellite merged radar altimeter data 被引量:15
1
作者 WAN Yong ZHANG Jie +1 位作者 MENG Junmin WANG Jing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第3期115-124,共10页
Wave energy resources are abundant in both offshore and nearshore areas of the China's seas. A reliable assessment of the wave energy resources must be performed before they can be exploited. First, for a water depth... Wave energy resources are abundant in both offshore and nearshore areas of the China's seas. A reliable assessment of the wave energy resources must be performed before they can be exploited. First, for a water depth in offshore waters of China, a parameterized wave power density model that considers the effects of the water depth is introduced to improve the calculating accuracy of the wave power density. Second, wave heights and wind speeds on the surface of the China's seas are retrieved from an AVISO multi-satellite altim-eter data set for the period from 2009 to 2013. Three mean wave period inversion models are developed and used to calculate the wave energy period. Third, a practical application value for developing the wave energy is analyzed based on buoy data. Finally, the wave power density is then calculated using the wave field data. Using the distribution of wave power density, the energy level frequency, the time variability indexes, the to-tal wave energy and the distribution of total wave energy density according to a wave state, the offshore wave energy in the China's seas is assessed. The results show that the areas of abundant and stable wave energy are primarily located in the north-central part of the South China Sea, the Luzon Strait, southeast of Taiwan in the China's seas; the wave power density values in these areas are approximately 14.0–18.5 kW/m. The wave energy in the China’s seas presents obvious seasonal variations and optimal seasons for a wave energy utilization are in winter and autumn. Except for very coastal waters, in other sea areas in the China's seas, the energy is primarily from the wave state with 0.5 m≤Hs≤4 m, 4 s≤Te≤10 s whereHs is a significant wave height andTe is an energy period; within this wave state, the wave energy accounts for 80% above of the total wave energy. This characteristic is advantageous to designing wave energy convertors (WECs). The practical application value of the wave energy is higher which can be as an effective supplement for an energy con-sumption in some areas. The above results are consistent with the wave model which indicates fully that this new microwave remote sensing method altimeter is effective and feasible for the wave energy assessment. 展开更多
关键词 China's seasmulti-satellite merged altimeter data wave energy resources assessment wave power density
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部