Comprehensive research has been implemented to raise the efficiency of the geochemical survey of stream sediments(SSs)that formed under the cryolithogenesis conditions.The authors analysed the composition,structure an...Comprehensive research has been implemented to raise the efficiency of the geochemical survey of stream sediments(SSs)that formed under the cryolithogenesis conditions.The authors analysed the composition,structure and specific features of the formation of exogenous anomalous geochemical fields(AGFs)identified through SSs of large river valleys of IV order.In our case,these were the valleys of Maly Ken,Ken and Tap Rivers.These rivers are located in the central and southern parts of the Balygychan-Sugoy trough enclosed in the Magadan region,North-East of Russia.The authors proposed a new technique to sample loose alluvium of SSs in the large river valleys along the profiles.The profiles were located across the valleys.The AGFs of Au,Ag,Pb,Zn,Sn,Bi,Mo and W were studied.Correlations between elements have been established.These elements are the main indicator elements of Au-Ag,Ag-Pb,Sn-Ag,Mo-W and Sn-W mineralization occurring on the sites under study.The results obtained were compared with the results of geochemical surveys of SSs.It is concluded that the AGFs recognized along the profiles reflect the composition and structure of eroded and drained ore zones,uncover completely and precisely the pattern of element distribution in loose sediments of large water flows.The alluvium fraction<0.25 mm seems to be most significant in a practical sense,as it concentrated numerous ore elements.Sampling of this fraction in the river valleys of IV order does not cause any difficulty,for this kind of material is plentiful.The developed technique of alluvium sampling within large river valleys is efficient in searching for diverse mineralization at all stages of prognostic prospecting.It is applicable for geochemical survey of SSs performed at different scales both in the North-East of Russia,as well as other regions with similar climatic conditions,where the SSs are formed under the cryolithogenesis conditions.展开更多
Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and c...Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and channels)of the catchment is assumed.This study focused on sediment connectivity analysis in the SlavíčRiver catchment in the MoravskoslezskéBeskydy Mts in the eastern part of the Czech Republic.The connectivity index and connectivity index target modelling were combined with an analysis of anthropogenic interventions.Additionally,field mapping,grain size of bed sediments and stream power analysis were used to obtain information about connectivity in the catchment.Based on the analysis and obtained results,terrain topography is the current main driving factor affecting the connectivity of sediment movement in the SlavíčRiver catchment.However,the modelling provided valuable information about high sediment connectivity despite different recent land use conditions(highly forested area of the catchment)than those in historical times from the 16th to 19th centuries when the SlavíčRiver catchment was highly deforested and sediment connectivity was probably higher.The analysis of anthropogenic interventions,field mapping,grain size of bed sediments and stream power analysis revealed more deceleration of sediment movement through the catchment,decreased sediment connectivity with bed erosion,and gradual river channel process transformation in some reaches.Field mapping has identified various natural formations and human-induced changes impacting the longitudinal and lateral connectivity in the SlavíčRiver.For instance,embankments along 48%of the river's length,both on the right and left banks,significantly hinder lateral sediment supply to the channel.Stream power index analysis indicates increased energy levels in the flowing water in the river's upper reaches(up to 404.8 W m^(-2)).This high energy is also observed in certain downstream sections(up to 337.6 W m^(-2)),where it is influenced by human activities.These conditions lead to intensified erosion processes,playing a crucial role in sediment connectivity.Similar observations were described in recent studies that pointed out the long-term human interventions on many streams draining European mountains,where a decrease in sediment connectivity in these streams is linked with sediment deficits and the transformation of processes forming channels.展开更多
The integrated development of Tibet "one river and two streams" agricultural ecological basin should control the generated environmental problems and prevent new environmental problems,thereby promoting coor...The integrated development of Tibet "one river and two streams" agricultural ecological basin should control the generated environmental problems and prevent new environmental problems,thereby promoting coordinated development of agricultural economy in the region. It is very necessary and urgent to explore main environmental problems of Tibet " one river and two streams" agricultural ecological basin and effective countermeasures. When developing resources and economy,the principle of combining prevention with control,dominated by prevention and integrated control should be followed; regional advantages,characteristics and environmental self restoring ability should be sufficiently played and used; the policy of integrated prevention and utilization should be used; compensation method,prevention control measures and planning assumption for main environmental problems should be proposed,which could prevent that systemic development of Tibet " one river and two streams" agricultural ecological basin takes the old path of " firstly destroying and then controlling".展开更多
Tibet Autonomous Region is located in the southwest of China. As a special area with high altitude,low temperature,abundant and diverse resources,the development of agricultural modernization has itself development at...Tibet Autonomous Region is located in the southwest of China. As a special area with high altitude,low temperature,abundant and diverse resources,the development of agricultural modernization has itself development attribute and feature. Agricultural development area of Tibet mainly concentrates in the " one river and two streams" basin. In this paper,combining the development of modern agriculture on the plateau,the connotation and characteristics of the development of plateau modern agriculture are illustrated from the angle of environment economics. Based on the observation method,linking theory with practice and combining literature research method,descriptive study is conducted,and the specific problems in the development of plateau modern agriculture in the agricultural basin are found. For example,the development of agriculture in Tibet has low utilization rate of resources and unbalanced distribution,agricultural mechanization shows gradient development,productivity and agricultural extension are backward,efforts to promote innovation and science knowledge are not enough,agricultural pollution expands,and the awareness of environmental protection is low. In view of the above problems,we put forward some countermeasures and suggestions: developing local advantage characteristic agriculture,developing cooperative economic organization,establishing the training promotion mode of theory combining with practice,establishing agricultural industry system of sightseeing tourism ecology. The research could provide theoretical suggestions for the future development of plateau modern agriculture.展开更多
Agricultural economic development of Tibet Autonomous Region mainly concentrates in the "One River and Two Streams" agricultural production basin. The basin is main concentrated place for agricultural resour...Agricultural economic development of Tibet Autonomous Region mainly concentrates in the "One River and Two Streams" agricultural production basin. The basin is main concentrated place for agricultural resources development,economic construction and population aggregation,and the region playing the advantages of Tibetan agriculture,corresponding with the practice,and enhancing self development and innovation. In the multi-year development and construction,it develops regional large agriculture,builds irrigation and water conservancy facilities,vigorously changes medium and low-yield land,actively develops animal husbandry and agriculture,and gradually promotes the effective combination of traffic industry and transportation industry,which has made considerable achievements. But in the face of today's increasingly advocated theme of "building beautiful Tibet and constructing ecological home",the construction of environmental problems lacking the systemic research is the prominent and fundamental problem in the "One River and Two Streams" agricultural production basin. Meanwhile,environment construction is an important part of economic development planning,and the solving of environmental protection problem is the historical mission in the contemporary and future generations. Therefore,it is very necessary to study the environment problems in Tibet "One River and Two Streams" agricultural production basin. The "One River and Two Streams" agricultural production basin is preliminarily explored for providing reference for the relevant environmental departments.展开更多
A heavy rainfall event that occurred over the middle and lower reaches of the Yangtze River Basin (YRB) during July 11-13 2000 is explored in this study. The potential/stream function is used to analyze the upstream...A heavy rainfall event that occurred over the middle and lower reaches of the Yangtze River Basin (YRB) during July 11-13 2000 is explored in this study. The potential/stream function is used to analyze the upstream "strong signals" of the water vapor transport in the Tibetan Plateau (TP). The studied time period covers from 2000 LST 5 July to 2000 LST 15 July (temporal resolution: 6 hours). By analyzing the three-dimensional structure of the water vapor flux, vorticity and divergence prior to and during the heavy rainfall event, the upstream "strong signals" related to this heavy rainfall event are revealed. A strong correlation exists between the heavy rainfall event in the YRB and the convective clouds over the TE The "convergence zone" of the water vapor transport is also identified, based on correlation analysis of the water vapor flux two days and one day prior to, and on the day of, the heavy rainfall. And this "convergence zone" coincides with the migration of the maximum rainfall over the YRB. This specific coupled structure actually plays a key role in generating heavy rainfall over the YRB. The eastward movement of the coupled system with a divergence]convergence center of the potential function at the upper/lower level resembles the spatiotemporal evolution of the heavy rainfall event over the YRB. These upstream "strong signals" are clearly traced in this study through analyzing the three-dimensional structure of the potential/stream function of upstream water vapor transport.展开更多
Unit stream power is the most important and dominant parameter for the determination of transport rate of sand,gravel,and hyper-concentrated sediment with wash load.Minimum energy dissipation rate theory,or its simpli...Unit stream power is the most important and dominant parameter for the determination of transport rate of sand,gravel,and hyper-concentrated sediment with wash load.Minimum energy dissipation rate theory,or its simplified minimum unit stream power and minimum stream power theories,can provide engineers the needed theoretical basis for river morphology and river engineering studies.The Generalized Sediment Transport model for Alluvial River Simulation computer mode series have been developed based on the above theories.The computer model series have been successfully applied in many countries.Examples will be used to illustrate the applications of the computer models to solving a wide range of river morphology and river engineering problems.展开更多
Ngwerere and Kanakatampa Streams are the main tributaries of the Chongwe River. The Ngwerere stream originates from the city of Lusaka and meanders through Lusaka City and Chongwe Town for an approximate distance of 4...Ngwerere and Kanakatampa Streams are the main tributaries of the Chongwe River. The Ngwerere stream originates from the city of Lusaka and meanders through Lusaka City and Chongwe Town for an approximate distance of 41 km before joining into the upper part of Chongwe River. The Kanakatampa Stream is a tributary of the Chongwe River. It meanders from the Kanakatampa Area for approximately 52 km before discharging into the middle of the upper part of the Chongwe River. The Chongwe River Catchment which is a sub-catchment of the Zambezi Basin drew the attention of researchers and policymakers when the Chongwe River started drying up in the dry seasons causing a water crisis particularly in the downstream regions of the middle catchment. Therefore, it is important from the water resources management perspective, to assess the contribution of tributaries into the flows of the Chongwe River. Ngwerere and Kanakatampa streams are socially, economically, and environmentally important streams for the city of Lusaka and surrounding area. This study, therefore, concentrated on evaluating the flow contribution of the two streams to the Chongwe River using the Water Evaluation And Planning (WEAP) tool. The streamflow data (1970-2010) recorded at the Chongwe Great East Road Bridge gauging station were used in the WEAP embedded Parameter ESTimation (PEST) auto-calibration tool to calibrate (1970-1999) and validate (2000-2010) the model. The monthly streamflow model calibration and validation results were assessed using the correlation coefficient (CC), Coefficient of determination (R<sup>2</sup>), Nash-Sutcliffe Coefficient of Efficiency (NSE), and Percent bias (PBIAS). The model performance results achieved were PBIAS of 1.24%, CC = 0.81, R<sup>2</sup> = 0.66 and NSE = 0.62 during the calibration period and a positive PBIAS of 2.94%, CC = 0.81, R<sup>2</sup> = 0.67 and NSE = 0.62 during the validation period. The median of the flows (Q<sub>50</sub>) was obtained from the historical flow duration curves (FDCs) generated in averaged intervals of 10-year from 1970 to 2019. The results showed that on average, the Ngwerere and Kanakatampa Streams contribute 52.8% and 29.6% respectively, to the flow of the Chongwe River in the upper and middle Catchment. The results also showed that the contribution of the Ngwerere and Kanakatampa Streams to the Chongwe River discharge has been reducing historically at a rate of 0.65% per decade and 1.35% per decade respectively over a period of 50 years (1970-2019). Suggestions for sustainable management of the tributaries such as the Ngwerere and Kanakatampa Streams were provided in this study.展开更多
Hydropower gains increasing importance as a steerable and controllable power source in a renewable energy mix and deregulated markets. Although hydropower produces fossil-free energy, it has a significant impact on th...Hydropower gains increasing importance as a steerable and controllable power source in a renewable energy mix and deregulated markets. Although hydropower produces fossil-free energy, it has a significant impact on the local environment. This review investigates the effects of flow alterations by hydropower on the downstream river system and the possibilities to integrate these effects into hydraulic modeling. The results show that various effects of flow regulation on the ecosystem, but also social and economic effects on related communities were observed in the last decades. The application of hydraulic models for investigations of ecological effects is common. Especially hydraulic effects and effects on fish were extensively modeled with the help of hydraulic 1D- and 2D-simulations. Current applications to investigate social and economic effects integrated into hydraulic modeling are meanwhile limited. Approaches to realizing this integration are presented. Further research on the economic valuation of ecosystems and integration of social and economic effects to hydraulic models is necessary to develop holistic tools to support decision-making on sustainable hydropower.展开更多
由于受人类活动及气候变化影响,黄河上游干流水沙特征发生显著变化。为探究黄河上游水沙变化情况,基于黄河上游5个水文站19642019年水沙、遥感影像等数据,利用Mann-Kendall检验法、滑动t检验法、累积距平曲线和双累积曲线等突变检验方...由于受人类活动及气候变化影响,黄河上游干流水沙特征发生显著变化。为探究黄河上游水沙变化情况,基于黄河上游5个水文站19642019年水沙、遥感影像等数据,利用Mann-Kendall检验法、滑动t检验法、累积距平曲线和双累积曲线等突变检验方法和小波分析法,对黄河上游水沙变化特征进行研究。利用水沙关系曲线及线性回归法等方法估算人类活动和气候对水沙变化的贡献率,并着重讨论梯级水库建设及土地利用变化对水沙的影响。结果表明:1)黄河上游玛曲-小川段流域内降雨量和径流量变化幅度不明显,贵德站、循化站、小川站19862019年年均输沙量分别减至19641985年的9.8%、24.6%、38.8%,输沙量大大减少。黄河上游玛曲-小川段径流量突变多在1986年,输沙量突变多在1969、1986、2004年,径流量存在8、16、22 a周期,输沙量存在4~8、18~21、27 a周期。2)1969年后,河流输沙能力增强,水沙关系显著改变。在不同时段内,人类活动对径流量变化在19872019年贡献率为66.3%,对输沙量变化在19701986、19872004、20052019年的贡献率为72.96%、70.73%、69.7%。人类活动对黄河上游干流水沙影响占据主导因素。3)刘家峡水库淤积最为严重,单库运行期水库淤积量为2.39亿t,排沙比变化范围为1.39%~10.7%。梯级水库联调使得径流量在19642004年间减少47.8%,19642019年间梯级水库减沙94.8%,梯级水库对输沙量影响远大于对径流量的影响。4)19802020年间,草地面积增加了1880.03 km 2,增幅3.1%,有利于减少输沙量,草地拦沙效益大于截流效益。展开更多
基金was performed within the framework of the State Assignment Projects No.0284–2021-0002.
文摘Comprehensive research has been implemented to raise the efficiency of the geochemical survey of stream sediments(SSs)that formed under the cryolithogenesis conditions.The authors analysed the composition,structure and specific features of the formation of exogenous anomalous geochemical fields(AGFs)identified through SSs of large river valleys of IV order.In our case,these were the valleys of Maly Ken,Ken and Tap Rivers.These rivers are located in the central and southern parts of the Balygychan-Sugoy trough enclosed in the Magadan region,North-East of Russia.The authors proposed a new technique to sample loose alluvium of SSs in the large river valleys along the profiles.The profiles were located across the valleys.The AGFs of Au,Ag,Pb,Zn,Sn,Bi,Mo and W were studied.Correlations between elements have been established.These elements are the main indicator elements of Au-Ag,Ag-Pb,Sn-Ag,Mo-W and Sn-W mineralization occurring on the sites under study.The results obtained were compared with the results of geochemical surveys of SSs.It is concluded that the AGFs recognized along the profiles reflect the composition and structure of eroded and drained ore zones,uncover completely and precisely the pattern of element distribution in loose sediments of large water flows.The alluvium fraction<0.25 mm seems to be most significant in a practical sense,as it concentrated numerous ore elements.Sampling of this fraction in the river valleys of IV order does not cause any difficulty,for this kind of material is plentiful.The developed technique of alluvium sampling within large river valleys is efficient in searching for diverse mineralization at all stages of prognostic prospecting.It is applicable for geochemical survey of SSs performed at different scales both in the North-East of Russia,as well as other regions with similar climatic conditions,where the SSs are formed under the cryolithogenesis conditions.
基金supported by an internal grant of the University of Ostrava[SGS10/PřF/2021-Specificity of fluvial landscape in the context of historical and future changes].
文摘Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and channels)of the catchment is assumed.This study focused on sediment connectivity analysis in the SlavíčRiver catchment in the MoravskoslezskéBeskydy Mts in the eastern part of the Czech Republic.The connectivity index and connectivity index target modelling were combined with an analysis of anthropogenic interventions.Additionally,field mapping,grain size of bed sediments and stream power analysis were used to obtain information about connectivity in the catchment.Based on the analysis and obtained results,terrain topography is the current main driving factor affecting the connectivity of sediment movement in the SlavíčRiver catchment.However,the modelling provided valuable information about high sediment connectivity despite different recent land use conditions(highly forested area of the catchment)than those in historical times from the 16th to 19th centuries when the SlavíčRiver catchment was highly deforested and sediment connectivity was probably higher.The analysis of anthropogenic interventions,field mapping,grain size of bed sediments and stream power analysis revealed more deceleration of sediment movement through the catchment,decreased sediment connectivity with bed erosion,and gradual river channel process transformation in some reaches.Field mapping has identified various natural formations and human-induced changes impacting the longitudinal and lateral connectivity in the SlavíčRiver.For instance,embankments along 48%of the river's length,both on the right and left banks,significantly hinder lateral sediment supply to the channel.Stream power index analysis indicates increased energy levels in the flowing water in the river's upper reaches(up to 404.8 W m^(-2)).This high energy is also observed in certain downstream sections(up to 337.6 W m^(-2)),where it is influenced by human activities.These conditions lead to intensified erosion processes,playing a crucial role in sediment connectivity.Similar observations were described in recent studies that pointed out the long-term human interventions on many streams draining European mountains,where a decrease in sediment connectivity in these streams is linked with sediment deficits and the transformation of processes forming channels.
基金Supported by “Location Observation Study of Soil Nutrient of Cultivated Land in Tibet Main Climate Type Region” from the Project of Finance Department of Tibet Autonomous Region
文摘The integrated development of Tibet "one river and two streams" agricultural ecological basin should control the generated environmental problems and prevent new environmental problems,thereby promoting coordinated development of agricultural economy in the region. It is very necessary and urgent to explore main environmental problems of Tibet " one river and two streams" agricultural ecological basin and effective countermeasures. When developing resources and economy,the principle of combining prevention with control,dominated by prevention and integrated control should be followed; regional advantages,characteristics and environmental self restoring ability should be sufficiently played and used; the policy of integrated prevention and utilization should be used; compensation method,prevention control measures and planning assumption for main environmental problems should be proposed,which could prevent that systemic development of Tibet " one river and two streams" agricultural ecological basin takes the old path of " firstly destroying and then controlling".
基金Supported by Tibet Key Science and Technology Plan Projectthe Research Project of Influence of Climate Change on Major Agricultural Crops and Its Growth Environment in Tibet and Countermeasures
文摘Tibet Autonomous Region is located in the southwest of China. As a special area with high altitude,low temperature,abundant and diverse resources,the development of agricultural modernization has itself development attribute and feature. Agricultural development area of Tibet mainly concentrates in the " one river and two streams" basin. In this paper,combining the development of modern agriculture on the plateau,the connotation and characteristics of the development of plateau modern agriculture are illustrated from the angle of environment economics. Based on the observation method,linking theory with practice and combining literature research method,descriptive study is conducted,and the specific problems in the development of plateau modern agriculture in the agricultural basin are found. For example,the development of agriculture in Tibet has low utilization rate of resources and unbalanced distribution,agricultural mechanization shows gradient development,productivity and agricultural extension are backward,efforts to promote innovation and science knowledge are not enough,agricultural pollution expands,and the awareness of environmental protection is low. In view of the above problems,we put forward some countermeasures and suggestions: developing local advantage characteristic agriculture,developing cooperative economic organization,establishing the training promotion mode of theory combining with practice,establishing agricultural industry system of sightseeing tourism ecology. The research could provide theoretical suggestions for the future development of plateau modern agriculture.
基金Sponsored by Finance Item of Tibet Autonomous Region
文摘Agricultural economic development of Tibet Autonomous Region mainly concentrates in the "One River and Two Streams" agricultural production basin. The basin is main concentrated place for agricultural resources development,economic construction and population aggregation,and the region playing the advantages of Tibetan agriculture,corresponding with the practice,and enhancing self development and innovation. In the multi-year development and construction,it develops regional large agriculture,builds irrigation and water conservancy facilities,vigorously changes medium and low-yield land,actively develops animal husbandry and agriculture,and gradually promotes the effective combination of traffic industry and transportation industry,which has made considerable achievements. But in the face of today's increasingly advocated theme of "building beautiful Tibet and constructing ecological home",the construction of environmental problems lacking the systemic research is the prominent and fundamental problem in the "One River and Two Streams" agricultural production basin. Meanwhile,environment construction is an important part of economic development planning,and the solving of environmental protection problem is the historical mission in the contemporary and future generations. Therefore,it is very necessary to study the environment problems in Tibet "One River and Two Streams" agricultural production basin. The "One River and Two Streams" agricultural production basin is preliminarily explored for providing reference for the relevant environmental departments.
文摘A heavy rainfall event that occurred over the middle and lower reaches of the Yangtze River Basin (YRB) during July 11-13 2000 is explored in this study. The potential/stream function is used to analyze the upstream "strong signals" of the water vapor transport in the Tibetan Plateau (TP). The studied time period covers from 2000 LST 5 July to 2000 LST 15 July (temporal resolution: 6 hours). By analyzing the three-dimensional structure of the water vapor flux, vorticity and divergence prior to and during the heavy rainfall event, the upstream "strong signals" related to this heavy rainfall event are revealed. A strong correlation exists between the heavy rainfall event in the YRB and the convective clouds over the TE The "convergence zone" of the water vapor transport is also identified, based on correlation analysis of the water vapor flux two days and one day prior to, and on the day of, the heavy rainfall. And this "convergence zone" coincides with the migration of the maximum rainfall over the YRB. This specific coupled structure actually plays a key role in generating heavy rainfall over the YRB. The eastward movement of the coupled system with a divergence]convergence center of the potential function at the upper/lower level resembles the spatiotemporal evolution of the heavy rainfall event over the YRB. These upstream "strong signals" are clearly traced in this study through analyzing the three-dimensional structure of the potential/stream function of upstream water vapor transport.
文摘Unit stream power is the most important and dominant parameter for the determination of transport rate of sand,gravel,and hyper-concentrated sediment with wash load.Minimum energy dissipation rate theory,or its simplified minimum unit stream power and minimum stream power theories,can provide engineers the needed theoretical basis for river morphology and river engineering studies.The Generalized Sediment Transport model for Alluvial River Simulation computer mode series have been developed based on the above theories.The computer model series have been successfully applied in many countries.Examples will be used to illustrate the applications of the computer models to solving a wide range of river morphology and river engineering problems.
文摘Ngwerere and Kanakatampa Streams are the main tributaries of the Chongwe River. The Ngwerere stream originates from the city of Lusaka and meanders through Lusaka City and Chongwe Town for an approximate distance of 41 km before joining into the upper part of Chongwe River. The Kanakatampa Stream is a tributary of the Chongwe River. It meanders from the Kanakatampa Area for approximately 52 km before discharging into the middle of the upper part of the Chongwe River. The Chongwe River Catchment which is a sub-catchment of the Zambezi Basin drew the attention of researchers and policymakers when the Chongwe River started drying up in the dry seasons causing a water crisis particularly in the downstream regions of the middle catchment. Therefore, it is important from the water resources management perspective, to assess the contribution of tributaries into the flows of the Chongwe River. Ngwerere and Kanakatampa streams are socially, economically, and environmentally important streams for the city of Lusaka and surrounding area. This study, therefore, concentrated on evaluating the flow contribution of the two streams to the Chongwe River using the Water Evaluation And Planning (WEAP) tool. The streamflow data (1970-2010) recorded at the Chongwe Great East Road Bridge gauging station were used in the WEAP embedded Parameter ESTimation (PEST) auto-calibration tool to calibrate (1970-1999) and validate (2000-2010) the model. The monthly streamflow model calibration and validation results were assessed using the correlation coefficient (CC), Coefficient of determination (R<sup>2</sup>), Nash-Sutcliffe Coefficient of Efficiency (NSE), and Percent bias (PBIAS). The model performance results achieved were PBIAS of 1.24%, CC = 0.81, R<sup>2</sup> = 0.66 and NSE = 0.62 during the calibration period and a positive PBIAS of 2.94%, CC = 0.81, R<sup>2</sup> = 0.67 and NSE = 0.62 during the validation period. The median of the flows (Q<sub>50</sub>) was obtained from the historical flow duration curves (FDCs) generated in averaged intervals of 10-year from 1970 to 2019. The results showed that on average, the Ngwerere and Kanakatampa Streams contribute 52.8% and 29.6% respectively, to the flow of the Chongwe River in the upper and middle Catchment. The results also showed that the contribution of the Ngwerere and Kanakatampa Streams to the Chongwe River discharge has been reducing historically at a rate of 0.65% per decade and 1.35% per decade respectively over a period of 50 years (1970-2019). Suggestions for sustainable management of the tributaries such as the Ngwerere and Kanakatampa Streams were provided in this study.
文摘Hydropower gains increasing importance as a steerable and controllable power source in a renewable energy mix and deregulated markets. Although hydropower produces fossil-free energy, it has a significant impact on the local environment. This review investigates the effects of flow alterations by hydropower on the downstream river system and the possibilities to integrate these effects into hydraulic modeling. The results show that various effects of flow regulation on the ecosystem, but also social and economic effects on related communities were observed in the last decades. The application of hydraulic models for investigations of ecological effects is common. Especially hydraulic effects and effects on fish were extensively modeled with the help of hydraulic 1D- and 2D-simulations. Current applications to investigate social and economic effects integrated into hydraulic modeling are meanwhile limited. Approaches to realizing this integration are presented. Further research on the economic valuation of ecosystems and integration of social and economic effects to hydraulic models is necessary to develop holistic tools to support decision-making on sustainable hydropower.
文摘由于受人类活动及气候变化影响,黄河上游干流水沙特征发生显著变化。为探究黄河上游水沙变化情况,基于黄河上游5个水文站19642019年水沙、遥感影像等数据,利用Mann-Kendall检验法、滑动t检验法、累积距平曲线和双累积曲线等突变检验方法和小波分析法,对黄河上游水沙变化特征进行研究。利用水沙关系曲线及线性回归法等方法估算人类活动和气候对水沙变化的贡献率,并着重讨论梯级水库建设及土地利用变化对水沙的影响。结果表明:1)黄河上游玛曲-小川段流域内降雨量和径流量变化幅度不明显,贵德站、循化站、小川站19862019年年均输沙量分别减至19641985年的9.8%、24.6%、38.8%,输沙量大大减少。黄河上游玛曲-小川段径流量突变多在1986年,输沙量突变多在1969、1986、2004年,径流量存在8、16、22 a周期,输沙量存在4~8、18~21、27 a周期。2)1969年后,河流输沙能力增强,水沙关系显著改变。在不同时段内,人类活动对径流量变化在19872019年贡献率为66.3%,对输沙量变化在19701986、19872004、20052019年的贡献率为72.96%、70.73%、69.7%。人类活动对黄河上游干流水沙影响占据主导因素。3)刘家峡水库淤积最为严重,单库运行期水库淤积量为2.39亿t,排沙比变化范围为1.39%~10.7%。梯级水库联调使得径流量在19642004年间减少47.8%,19642019年间梯级水库减沙94.8%,梯级水库对输沙量影响远大于对径流量的影响。4)19802020年间,草地面积增加了1880.03 km 2,增幅3.1%,有利于减少输沙量,草地拦沙效益大于截流效益。