Potential mutagenic impurities in Active Pharmaceutical Ingredient, Meropenem Trihydrate were assessed and a novel analytical method for their quantification was developed and validated. This Liquid Chromatographic me...Potential mutagenic impurities in Active Pharmaceutical Ingredient, Meropenem Trihydrate were assessed and a novel analytical method for their quantification was developed and validated. This Liquid Chromatographic method using High Resolution Mass Spectrometer (LC-HRMS) technique is proved to be suitable for simultaneous quantification of all ten identified impurities with required specificity, sensitivity, resolution, precision, accuracy, and other method characteristics as per ICH Guidelines. The acceptable limit of less than 2.9 μg/g was considered for evaluations, based on drug substance dosage and duration of treatment. The method stands most sensitive with a Limit of Detection of 0.35 μg/g, considering the challenge full acceptance criteria as per current regulatory standards.展开更多
This work explores the potential of a triple combination of meropenem(MEM),a novel metallo-blactamase(MBL)inhibitor(indole-2-carboxylate 58(InC58)),and a serine-b-lactamase(SBL)inhibitor(avibactam(AVI))for broad-spect...This work explores the potential of a triple combination of meropenem(MEM),a novel metallo-blactamase(MBL)inhibitor(indole-2-carboxylate 58(InC58)),and a serine-b-lactamase(SBL)inhibitor(avibactam(AVI))for broad-spectrum activity against carbapenemase-producing bacteria.A diverse panel comprising MBL-and SBL-producing strains was used for susceptibility testing of the triple combination using the agar dilution method.The frequency of resistance(FoR)to MEM combined with InC58 was investigated.Mutants were sequenced and tested for cross resistance,fitness,and the stability of the resistance phenotype.Compared with the double combinations of MEM plus an SBL or MBL inhibitor,the triple combination extended the spectrum of activity to most of the isolates bearing SBLs(oxacillinase-48(OXA-48)and Klebsiella pneumoniae carbapenemase-2(KPC-2))and MBLs(New Delhi metallo-blactamases(NDMs)),although it was not effective against Verona integron-encoded metallo-blactamase(VIM)-carrying Pseudomonas aeruginosa(P.aeruginosa)and OXA-23-carrying Acinetobacter baumannii(A.baumannii).The FoR to MEM plus InC58 ranged from 2.22×10^(-7)to 1.13×10^(-6).The resistance correlated with mutations to ompC and comR,affecting porin C and copper permeability,respectively.The mutants manifested a fitness cost,a decreased level of resistance during passage without antibiotic pressure,and cross resistance to another carbapenem(imipenem)and a b-lactamase inhibitor(taniborbactam).In conclusion,compared with the dual combinations,the triple combination of MEM with InC58 and AVI showed a much wider spectrum of activity against different carbapenemaseproducing bacteria,revealing a new strategy to combat b-lactamase-mediated antimicrobial resistance.展开更多
文摘Potential mutagenic impurities in Active Pharmaceutical Ingredient, Meropenem Trihydrate were assessed and a novel analytical method for their quantification was developed and validated. This Liquid Chromatographic method using High Resolution Mass Spectrometer (LC-HRMS) technique is proved to be suitable for simultaneous quantification of all ten identified impurities with required specificity, sensitivity, resolution, precision, accuracy, and other method characteristics as per ICH Guidelines. The acceptable limit of less than 2.9 μg/g was considered for evaluations, based on drug substance dosage and duration of treatment. The method stands most sensitive with a Limit of Detection of 0.35 μg/g, considering the challenge full acceptance criteria as per current regulatory standards.
基金supported by the Ineos Oxford Institute for Antimicrobial Research,the Biotechnology and Biological Sciences Research Council(BB/V003291/1)the WellcomeTrust(106244/Z/14/Z).
文摘This work explores the potential of a triple combination of meropenem(MEM),a novel metallo-blactamase(MBL)inhibitor(indole-2-carboxylate 58(InC58)),and a serine-b-lactamase(SBL)inhibitor(avibactam(AVI))for broad-spectrum activity against carbapenemase-producing bacteria.A diverse panel comprising MBL-and SBL-producing strains was used for susceptibility testing of the triple combination using the agar dilution method.The frequency of resistance(FoR)to MEM combined with InC58 was investigated.Mutants were sequenced and tested for cross resistance,fitness,and the stability of the resistance phenotype.Compared with the double combinations of MEM plus an SBL or MBL inhibitor,the triple combination extended the spectrum of activity to most of the isolates bearing SBLs(oxacillinase-48(OXA-48)and Klebsiella pneumoniae carbapenemase-2(KPC-2))and MBLs(New Delhi metallo-blactamases(NDMs)),although it was not effective against Verona integron-encoded metallo-blactamase(VIM)-carrying Pseudomonas aeruginosa(P.aeruginosa)and OXA-23-carrying Acinetobacter baumannii(A.baumannii).The FoR to MEM plus InC58 ranged from 2.22×10^(-7)to 1.13×10^(-6).The resistance correlated with mutations to ompC and comR,affecting porin C and copper permeability,respectively.The mutants manifested a fitness cost,a decreased level of resistance during passage without antibiotic pressure,and cross resistance to another carbapenem(imipenem)and a b-lactamase inhibitor(taniborbactam).In conclusion,compared with the dual combinations,the triple combination of MEM with InC58 and AVI showed a much wider spectrum of activity against different carbapenemaseproducing bacteria,revealing a new strategy to combat b-lactamase-mediated antimicrobial resistance.