Meroplankton play a crucial role in both benthic and pelagic ecosystems.Existing quantitative research on estimating the quantities of meroplankton groups is both underrepresented and inaccurate.To investigate and eva...Meroplankton play a crucial role in both benthic and pelagic ecosystems.Existing quantitative research on estimating the quantities of meroplankton groups is both underrepresented and inaccurate.To investigate and evaluate the influence of varying mesh sizes(505 and 160μm)on the sampling efficiency of meroplankton,we conducted an examination using two commonly used plankton nets during the spring season in the Southern Yellow Sea(SYS).Our study revealed a total of 12 meroplankton groups,with 9 groups identified in the 505-μm mesh nets and 11 groups in the 160-μm mesh nets.The results demonstrated the superior collection efficiency of the 160-μm net compared to the 505-μm net across the majority of meroplankton groups.Furthermore,we focused on exploring the abundance,distribution patterns,and realized niches of meroplankton collected by the two mesh size nets,and observed that the distribution of meroplankton closely resembled the distribution of possible benthic adults in the SYS.Correlation analysis of the six dominant groups collected in the 160-μm mesh nets revealed that seawater temperature and salinity emerged as the key environmental factors driving variations in meroplankton abundance within the SYS.This study also found that a smaller mesh size net does not necessarily capture meroplankton more comprehensively.A comprehensive understanding of the ecological characteristics of meroplankton requires the combination of two types of nets for research.Our research significantly advances our understanding of the quantification,abundance,and distribution of meroplankton,serving as a valuable contribution to the broader landscape of detailed quantitative meroplankton studies.展开更多
Oscillations in sea level due to meteorological forces related to wind and pressure affect the regular tides and modify the sea level conditions, mainly in restricted waters such as bays. Investigations surrounding th...Oscillations in sea level due to meteorological forces related to wind and pressure affect the regular tides and modify the sea level conditions, mainly in restricted waters such as bays. Investigations surrounding these variations and the biological and chemical response are important for monitoring coastal regions mainly where upwelling shelf systems occur. A spatial and temporal database from Quick Scatterometer satellite vector wind, surface stations from the Southeast coast of Brazil and surface seawater data collected in Anjos Bay, Arraial do Cabo city, northeast of Rio de Janeiro State were used to investigate the meteorological influences in the variability of the dissolved oxygen, nutrients, meroplankton larvae and chlorophyll-a concentrations. Multivariate statistical approaches such as Principal Component Analysis (PCA) and Clustering Analysis (CA) were applied to verify spatial and temporal variances. A correlation matrix was also verified for different water masses in order to identify the relationship between the above parameters. A seasonal variability of the meteorological residual presents a well-defined pattern with maximum peaks in autumn/winter and minimum during spring/summer with negative values, period of occurrence of upwelling in this region. This lowering of the sea level is in accordance with the increasing of nutrients and meroplankton larvae for the same period. CA showed six groups and an importance of the zonal and meridional wind variability, including these variables in a single cluster. PCA retained eight components, explaining 64.10% of the total variance of data set. Some clusters and loadings have the same variables, showing the importance of the sea-air interaction.展开更多
基金Supported by the Laoshan Laboratory(Nos.LSKJ 202203700,LSKJ 202203704,LSKJ 202204005)the National Natural Science Foundation of China(NSFC)(Nos.42076166,42130411)the NSFC Ship Time Sharing Project(No.42149901)。
文摘Meroplankton play a crucial role in both benthic and pelagic ecosystems.Existing quantitative research on estimating the quantities of meroplankton groups is both underrepresented and inaccurate.To investigate and evaluate the influence of varying mesh sizes(505 and 160μm)on the sampling efficiency of meroplankton,we conducted an examination using two commonly used plankton nets during the spring season in the Southern Yellow Sea(SYS).Our study revealed a total of 12 meroplankton groups,with 9 groups identified in the 505-μm mesh nets and 11 groups in the 160-μm mesh nets.The results demonstrated the superior collection efficiency of the 160-μm net compared to the 505-μm net across the majority of meroplankton groups.Furthermore,we focused on exploring the abundance,distribution patterns,and realized niches of meroplankton collected by the two mesh size nets,and observed that the distribution of meroplankton closely resembled the distribution of possible benthic adults in the SYS.Correlation analysis of the six dominant groups collected in the 160-μm mesh nets revealed that seawater temperature and salinity emerged as the key environmental factors driving variations in meroplankton abundance within the SYS.This study also found that a smaller mesh size net does not necessarily capture meroplankton more comprehensively.A comprehensive understanding of the ecological characteristics of meroplankton requires the combination of two types of nets for research.Our research significantly advances our understanding of the quantification,abundance,and distribution of meroplankton,serving as a valuable contribution to the broader landscape of detailed quantitative meroplankton studies.
基金financial support of the Coordination for the Improvement of Higher Level Personnel-Brazilian Research Agency(Capes).
文摘Oscillations in sea level due to meteorological forces related to wind and pressure affect the regular tides and modify the sea level conditions, mainly in restricted waters such as bays. Investigations surrounding these variations and the biological and chemical response are important for monitoring coastal regions mainly where upwelling shelf systems occur. A spatial and temporal database from Quick Scatterometer satellite vector wind, surface stations from the Southeast coast of Brazil and surface seawater data collected in Anjos Bay, Arraial do Cabo city, northeast of Rio de Janeiro State were used to investigate the meteorological influences in the variability of the dissolved oxygen, nutrients, meroplankton larvae and chlorophyll-a concentrations. Multivariate statistical approaches such as Principal Component Analysis (PCA) and Clustering Analysis (CA) were applied to verify spatial and temporal variances. A correlation matrix was also verified for different water masses in order to identify the relationship between the above parameters. A seasonal variability of the meteorological residual presents a well-defined pattern with maximum peaks in autumn/winter and minimum during spring/summer with negative values, period of occurrence of upwelling in this region. This lowering of the sea level is in accordance with the increasing of nutrients and meroplankton larvae for the same period. CA showed six groups and an importance of the zonal and meridional wind variability, including these variables in a single cluster. PCA retained eight components, explaining 64.10% of the total variance of data set. Some clusters and loadings have the same variables, showing the importance of the sea-air interaction.