期刊文献+
共找到9,133篇文章
< 1 2 250 >
每页显示 20 50 100
HNF-4α determines hepatic differentiation of human mesenchymal stem cells from bone marrow 被引量:9
1
作者 Mong-Liang Chen Kuan-Der Lee +5 位作者 Huei-Chun Huang Yue-Lin Tsai Yi-Chieh Wu Tzer-Min Kuo Cheng-Po Hu Chungming Chang 《World Journal of Gastroenterology》 SCIE CAS CSCD 2010年第40期5092-5103,共12页
AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). METHODS: Human MSCs derived from bone marrow were induce... AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). METHODS: Human MSCs derived from bone marrow were induced into hepatocyte-like cells following a previously published protocol. The differentiation status of the hepatocyte-like cells was compared with various human hepatoma cell lines. Overexpression of hepatocyte nuclear factor (HNF)-4α was mediated by adenovirus infection of these hepatocyte-like cells. The expression of interesting genes was then examined by either re-verse transcription-polymerase chain reaction (RT-PCR) or real-time RT-PCR methods. RESULTS: Our results demonstrated that the differentiation status of hepatocyte-like cells induced from human MSCs was relatively similar to poorly differentiated human hepatoma cell lines. Interestingly, the HNF-4 isoform in induced MSCs and poorly differentiated human hepatoma cell lines was identified as HNF4γ instead of HNF-4α. Overexpression of HNF-4α in induced MSCs significantly enhanced the expression level of hepatic-specific genes, liver-enriched transcription factors, and cytochrome P450 (P450) genes. CONCLUSION: Overexpression of HNF-4α improves the hepatic differentiation of human MSCs from bone marrow and is a simple way of providing better cell sources for clinical applications. 展开更多
关键词 bone marrow Cytochrome P450 genes Differentiation of hepatocyte Hepatocyte nuclear factor 4 Human mesenchymal stem cells
下载PDF
Hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect neurons from cardiac arrest-induced pyroptosis
2
作者 Xiahong Tang Nan Zheng +8 位作者 Qingming Lin Yan You Zheng Gong Yangping Zhuang Jiali Wu Yu Wang Hanlin Huang Jun Ke Feng Chen 《Neural Regeneration Research》 SCIE CAS 2025年第4期1103-1123,共21页
Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to impr... Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to improve migration and survival of bone marrow–derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest,but the specific mechanisms by which hypoxia-preconditioned bone marrow–derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown.To this end,we established an in vitro co-culture model of bone marrow–derived mesenchymal stem cells and oxygen–glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis,possibly through inhibition of the MAPK and nuclear factor κB pathways.Subsequently,we transplanted hypoxia-preconditioned bone marrow–derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia.The results showed that hypoxia-preconditioned bone marrow–derived mesenchymal stem cells significantly reduced cardiac arrest–induced neuronal pyroptosis,oxidative stress,and mitochondrial damage,whereas knockdown of the liver isoform of phosphofructokinase in bone marrow–derived mesenchymal stem cells inhibited these effects.To conclude,hypoxia-preconditioned bone marrow–derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest,and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning. 展开更多
关键词 bone marrow–derived mesenchymal stem cells cardiac arrest cardiac resuscitation hypoxic preconditioning liver isoform of phosphofructokinase mitochondria NEUROINFLAMMATION oxidative stress PYROPTOSIS reactive oxygen species
下载PDF
Small extracellular vesicles from hypoxia-preconditioned bone marrow mesenchymal stem cells attenuate spinal cord injury via miR-146a-5p-mediated regulation of macrophage polarization 被引量:1
3
作者 Zeyan Liang Zhelun Yang +5 位作者 Haishu Xie Jian Rao Xiongjie Xu Yike Lin Chunhua Wang Chunmei Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2259-2269,共11页
Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)... Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury. 展开更多
关键词 bone marrow mesenchymal stem cells hypoxia preconditioning interleukin-1 receptor-associated kinase 1 MACROPHAGES mesenchymal stem cells small extracellular vesicles spinal cord injury
下载PDF
Optimizing bone marrow harvesting sites for enhanced mesenchymal stem cell yield and efficacy in knee osteoarthritis treatment
4
作者 Arulkumar Nallakumarasamy Sandeep Shrivastava +4 位作者 Ravi Velamoor Rangarajan Naveen Jeyaraman Avinash Gandi Devadas Swaminathan Ramasubramanian Madhan Jeyaraman 《World Journal of Methodology》 2025年第2期92-107,共16页
Knee osteoarthritis(OA)is a debilitating condition with limited long-term treatment options.The therapeutic potential of mesenchymal stem cells(MSCs),particularly those derived from bone marrow aspirate concentrate,ha... Knee osteoarthritis(OA)is a debilitating condition with limited long-term treatment options.The therapeutic potential of mesenchymal stem cells(MSCs),particularly those derived from bone marrow aspirate concentrate,has garnered attention for cartilage repair in OA.While the iliac crest is the traditional site for bone marrow harvesting(BMH),associated morbidity has prompted the exploration of alternative sites such as the proximal tibia,distal femur,and proximal humerus.This paper reviews the impact of different harvesting sites on mesenchymal stem cell(MSC)yield,viability,and regenerative potential,emphasizing their relevance in knee OA treatment.The iliac crest consistently offers the highest MSC yield,but alternative sites within the surgical field of knee procedures offer comparable MSC characteristics with reduced morbidity.The integration of harvesting techniques into existing knee surgeries,such as total knee arthroplasty,provides a less invasive approach while maintaining thera-peutic efficacy.However,variability in MSC yield from these alternative sites underscores the need for further research to standardize techniques and optimize clinical outcomes.Future directions include large-scale comparative studies,advanced characterization of MSCs,and the development of personalized harvesting strategies.Ultimately,the findings suggest that optimizing the site of BMH can significantly influence the quality of MSC-based therapies for knee OA,enhancing their clinical utility and patient outcomes. 展开更多
关键词 KNEE OSTEOARTHRITIS mesenchymal stem cells bone marrow harvest Regenerative medicine
下载PDF
Bone marrow mesenchymal stem cells in treatment of peripheral nerve injury
5
作者 Xiong-Fei Zou Bao-Zhong Zhang +1 位作者 Wen-Wei Qian Florence Mei Cheng 《World Journal of Stem Cells》 SCIE 2024年第8期799-810,共12页
Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI ... Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous trans-plantation ability.This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI.The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury.BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors,extracellular matrix molecules,and adhesion molecules.Additionally,BMSCs release pro-angiogenic factors to promote the formation of new blood vessels.They modulate cytokine expression and regulate macrophage polarization,leading to immunomodulation.Furthermore,BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration,thereby promoting neuronal repair and regeneration.Moreover,this review explores methods of applying BMSCs in PNI treatment,including direct cell trans-plantation into the injured neural tissue,implantation of BMSCs into nerve conduits providing support,and the application of genetically modified BMSCs,among others.These findings confirm the potential of BMSCs in treating PNI.However,with the development of this field,it is crucial to address issues related to BMSC therapy,including establishing standards for extracting,identifying,and cultivating BMSCs,as well as selecting application methods for BMSCs in PNI such as direct transplantation,tissue engineering,and genetic engineering.Addressing these issues will help translate current preclinical research results into clinical practice,providing new and effective treatment strategies for patients with PNI. 展开更多
关键词 bone marrow mesenchymal stem cells Peripheral nerve injury Schwann cells Myelin sheath Tissue engineering
下载PDF
Effects of interleukin-10 treated macrophages on bone marrow mesenchymal stem cells via signal transducer and activator of transcription 3 pathway
6
作者 Meng-Hao Lyu Ce Bian +3 位作者 Yi-Ping Dou Kang Gao Jun-Ji Xu Pan Ma 《World Journal of Stem Cells》 SCIE 2024年第5期560-574,共15页
BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved.Regulating the various phenotypes of macrophages to enhance the inflammatory environment can sign... BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved.Regulating the various phenotypes of macrophages to enhance the inflammatory environment can significantly affect the progression of diseases and tissue engineering repair process.AIM To assess the influence of interleukin-10(IL-10)on the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)following their interaction with macrophages in an inflammatory environment.METHODS IL-10 modulates the differentiation of peritoneal macrophages in Wistar rats in an inflammatory environment.In this study,we investigated its impact on the proliferation,migration,and osteogenesis of BMSCs.The expression levels of signal transducer and activator of transcription 3(STAT3)and its activated form,phos-phorylated-STAT3,were examined in IL-10-stimulated macrophages.Subsequently,a specific STAT3 signaling inhibitor was used to impede STAT3 signal activation to further investigate the role of STAT3 signaling.RESULTS IL-10-stimulated macrophages underwent polarization to the M2 type through substitution,and these M2 macrophages actively facilitated the osteogenic differentiation of BMSCs.Mechanistically,STAT3 signaling plays a crucial role in the process by which IL-10 influences macrophages.Specifically,IL-10 stimulated the activation of the STAT3 signaling pathway and reduced the macrophage inflammatory response,as evidenced by its diminished impact on the osteogenic differentiation of BMSCs.CONCLUSION Stimulating macrophages with IL-10 proved effective in improving the inflammatory environment and promoting the osteogenic differentiation of BMSCs.The IL-10/STAT3 signaling pathway has emerged as a key regulator in the macrophage-mediated control of BMSCs’osteogenic differentiation. 展开更多
关键词 MACROPHAGES INTERLEUKIN-10 bone marrow mesenchymal stem cells Signal transducer and activator of transcription 3 Inflammatory response
下载PDF
Comparative breakthrough: Umbilical cord mesenchymal stem cells vs bone marrow mesenchymal stem cells in heart failure treatment
7
作者 Peng Li 《World Journal of Cardiology》 2024年第12期776-780,共5页
In this article,we evaluate the comparative efficacy and safety of mesenchymal stem cells(MSCs)derived from bone marrow(BM-MSCs)and umbilical cord(UC-MSCs)in the treatment of heart failure and myocardial infarction.MS... In this article,we evaluate the comparative efficacy and safety of mesenchymal stem cells(MSCs)derived from bone marrow(BM-MSCs)and umbilical cord(UC-MSCs)in the treatment of heart failure and myocardial infarction.MSCs have gained importance as living bio drug due to their regenerative potential,with BM-MSCs being the most extensively studied.However,UC-MSCs offer unique advantages,such as noninvasive collection and fewer ethical concerns.This systematic review and meta-analysis summarizes data from 13 randomized controlled trials,which included a total of 693 patients.Their study shows that UC-MSCs significantly improved left ventricular ejection fraction by 5.08%at 6 months and 2.78%at 12 months compared with controls,while BM-MSCs showed no significant effect.Neither cell type showed significant changes in 6-minute walk distance.In addition,UC-MSCs and BM-MSCs had comparable safety profiles,with no significant differences in major adverse cardiac events,except for a lower rehospitalization rate observed with BM-MSCs.These results position UC-MSCs as a promising alternative in MSC-based therapies for cardiac disease,offering potential improvements in cardiac function while maintaining a favorable safety profile.Future research should focus on optimizing adminis-tration protocols and further exploring the long-term benefits and mechanisms of UC-MSCs in cardiac repair. 展开更多
关键词 mesenchymal stem cells Heart failure Umbilical cord-derived mesenchymal stem cells bone marrow-derived mesenchymal stem cells Left ventricular ejection fraction 6-minute walking distance Cardiac regeneration therapy
下载PDF
Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells 被引量:36
8
作者 Raquel Taléns-Visconti Ana Bonora +4 位作者 Ramiro Jover Vicente Mirabet Francisco Carbonell José Vicente Castell María José Gómez-Lechón 《World Journal of Gastroenterology》 SCIE CAS CSCD 2006年第36期5834-5845,共12页
AIM: To investigate and compare the hepatogenic transdifferentiation of adipose tissue-derived stem cells (ADSC) and bone marrow-derived mesenchymal stem cells (BMSC) in vitro. Transdifferentiation of BMSC into h... AIM: To investigate and compare the hepatogenic transdifferentiation of adipose tissue-derived stem cells (ADSC) and bone marrow-derived mesenchymal stem cells (BMSC) in vitro. Transdifferentiation of BMSC into hepatic cells in vivo has been described. Adipose tissue represents an accessible source of ADSC, with similar characteristics to BMSC. METHODS: BMSCs were obtained from patients undergoing total hip arthroplasty and ADSC from human adipose tissue obtained from lipectomy. Cells were grown in medium containing 15% human serum. Cultures were serum deprived for 2 d before cultivating under similar pro-hepatogenic conditions to those of liver development using a 2-step protocol with sequential addition of growth factors, cytokines and hormones. Hepatic differentiation was RT-PCR-assessed and liver-marker genes were immunohistochemically analysed.RESULTS: BMSC and ADSC exhibited a fibroblastic morphology that changed to a polygonal shape when cells differentiated. Expression of stem cell marker Thyl decreased in differentiated ADSC and BMSC. However, the expression of the hepatic markers, albumin and CYPs increased to a similar extent in differentiated BMSC and ADSC. Hepatic gene activation could be attributed to increased liver-enriched transcription factors (C/EBPβ and HNF4α), as demonstrated by adenoviral expression vectors.CONCLUSION: Mesenchymal stem cells can be induced to hepatogenic transdifferentiation in vitro. ADSCs have a similar hepatogenic differentiation potential to BMSC, but a longer culture period and higher proliferation capacity. Therefore, adipose tissue may be an ideal source of large amounts of autologous stem cells, and may become an alternative for hepatocyte regeneration, liver cell transplantation or preclinical drug testing. 展开更多
关键词 mesenchymal stem cells bone marrow Adipose tissue TRANSDIFFERENTIATION Hepatic lineage Liver cell transplantation.
下载PDF
Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells 被引量:23
9
作者 Xiao-Hong Wu Cui-Ping Liu Kuan-Feng Xu Xiao-Dong Mao Jian Zhu Jing-Jing Jiang Dai Cui Mei Zhang Yu Xu Chao Liu 《World Journal of Gastroenterology》 SCIE CAS CSCD 2007年第24期3342-3349,共8页
AIM: To study the capacity of bone marrow mesenchymal stem cells (BM-MSCs) trans-differentiating into islet-like cells and to observe the effect of portal vein transplantation of islet-like cells in the treatment of s... AIM: To study the capacity of bone marrow mesenchymal stem cells (BM-MSCs) trans-differentiating into islet-like cells and to observe the effect of portal vein transplantation of islet-like cells in the treatment of streptozotocin-induced diabetic rat. METHODS: BM-MSCs were isolated from SD rats and induced to differentiate into islet-like cells under defined conditions. Differentiation was evaluated with electron microscopy, RT-PCR, immunofluorescence and flow cytometry. insulin release after glucose challenge was tested with ELiSA. Then allogeneic islet-like cells were transplanted into diabetic rats via portal vein. Blood glucose levels were monitored and islet hormones were detected in the liver and pancreas of the recipient by immunohistochemistry. RESULTS: BM-MSCs were spheroid adherent monolayers with high CD90, CD29 and very low CD45 expression. Typical islet-like cells clusters were formed after induction. Electron microscopy revealed that secretory granules were densely packed within the cytoplasm of the differentiated cells. The spheroid cells expressed islet related genes and hormones. The insulin-positive cells accounted for 19.8% and mean fluorescence intensity increased by 2.6 fold after induction. The cells secreted a small amount of insulin that was increased 1.5 fold after glucose challenge. After transplantation, islet-like cells could locate in the liver expressing islet hormones and lower the glucose levels of diabetic rats during d 6 to d 20.CONCLUSION: Rat BM-MSCs could be transdifferentiated into islet-like cells in vitro . Portal vein transplantation of islet-like cells could alleviate the hyperglycemia of diabetic rats. 展开更多
关键词 bone marrow mesenchymal stem cells TRANS-DIFFERENTIATION ISLET INSULIN TRANSPLANTATION
下载PDF
Exosomes from bone marrow mesenchymal stem cells are a potential treatment for ischemic stroke 被引量:12
10
作者 Chang Liu Tian-Hui Yang +3 位作者 Hong-Dan Li Gong-Zhe Li Jia Liang Peng Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2246-2251,共6页
Exosomes derived from human bone marrow mesenchymal stem cells(MSC-Exo)are characterized by easy expansion and storage,low risk of tumor formation,low immunogenicity,and anti-inflammatory effects.The therapeutic effec... Exosomes derived from human bone marrow mesenchymal stem cells(MSC-Exo)are characterized by easy expansion and storage,low risk of tumor formation,low immunogenicity,and anti-inflammatory effects.The therapeutic effects of MSC-Exo on ischemic stroke have been widely explored.However,the underlying mechanism remains unclear.In this study,we established a mouse model of ischemic brain injury induced by occlusion of the middle cerebral artery using the thread bolt method and injected MSC-Exo into the tail vein.We found that administration of MSC-Exo reduced the volume of cerebral infarction in the ischemic brain injury mouse model,increased the levels of interleukin-33(IL-33)and suppression of tumorigenicity 2 receptor(ST2)in the penumbra of cerebral infarction,and improved neurological function.In vitro results showed that astrocyte-conditioned medium of cells deprived of both oxygen and glucose,to simulate ischemia conditions,combined with MSC-Exo increased the survival rate of primary cortical neurons.However,after transfection by IL-33 siRNA or ST2 siRNA,the survival rate of primary cortical neurons was markedly decreased.These results indicated that MSC-Exo inhibited neuronal death induced by oxygen and glucose deprivation through the IL-33/ST2 signaling pathway in astrocytes.These findings suggest that MSC-Exo may reduce ischemia-induced brain injury through regulating the IL-33/ST2 signaling pathway.Therefore,MSC-Exo may be a potential therapeutic method for ischemic stroke. 展开更多
关键词 ASTROCYTES bone marrow mesenchymal stem cells brain injury EXOSOME IL-33 inflammation ischemic stroke neurological function NEURON ST2
下载PDF
Exosomal miR-23b from bone marrow mesenchymal stem cells alleviates oxidative stress and pyroptosis after intracerebral hemorrhage 被引量:5
11
作者 Liu-Ting Hu Bing-Yang Wang +2 位作者 Yu-Hua Fan Zhi-Yi He Wen-Xu Zheng 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期560-567,共8页
Our previous studies showed that miR-23b was downregulated in patients with intracerebral hemorrhage(ICH). This indicates that miR-23b may be closely related to the patho-physiological mechanism of ICH, but this hypot... Our previous studies showed that miR-23b was downregulated in patients with intracerebral hemorrhage(ICH). This indicates that miR-23b may be closely related to the patho-physiological mechanism of ICH, but this hypothesis lacks direct evidence. In this study, we established rat models of ICH by injecting collagenase Ⅶ into the right basal ganglia and treating them with an injection of bone marrow mesenchymal stem cell(BMSC)-derived exosomal miR-23b via the tail vein. We found that edema in the rat brain was markedly reduced and rat behaviors were improved after BMSC exosomal miR-23b injection compared with those in the ICH groups. Additionally, exosomal miR-23b was transported to the microglia/macrophages, thereby reducing oxidative stress and pyroptosis after ICH. We also used hemin to mimic ICH conditions in vitro. We found that phosphatase and tensin homolog deleted on chromosome 10(PTEN) was the downstream target gene of miR-23b, and exosomal miR-23b exhibited antioxidant effects by regulating the PTEN/Nrf2 pathway. Moreover, miR-23b reduced PTEN binding to NOD-like receptor family pyrin domain containing 3(NLRP3) and NLRP3 inflammasome activation, thereby decreasing the NLRP3-dependent pyroptosis level. These findings suggest that BMSC-derived exosomal miR-23b exhibits antioxidant effects through inhibiting PTEN and alleviating NLRP3 inflammasome-mediated pyroptosis, thereby promoting neurologic function recovery in rats with ICH. 展开更多
关键词 bone marrow mesenchymal stem cells exosomal miRNAs intracerebral hemorrhage miR-23b NEUROINFLAMMATION NLRP3 inflammasome Nrf2 oxidative stress PTEN PYROPTOSIS
下载PDF
Immunophenotype and differentiation capacity of bone marrow-derived mesenchymal stem cells from CBA/Ca,ICR and Balb/c mice 被引量:3
12
作者 Yin Yin Ooi Zul'atfi Rahmat +2 位作者 Shinsmon Jose Rajesh Ramasamy Sharmili Vidyadaran 《World Journal of Stem Cells》 SCIE CAS 2013年第1期34-42,共9页
AIM:To assess the capacity to isolate and expand mesenchymal stem cells(MSC)from bone marrow of CBA/Ca,ICR and Balb/c mice. METHODS:Bone marrow of tibia and femur were flushed,cultured and maintained in supplemented D... AIM:To assess the capacity to isolate and expand mesenchymal stem cells(MSC)from bone marrow of CBA/Ca,ICR and Balb/c mice. METHODS:Bone marrow of tibia and femur were flushed,cultured and maintained in supplemented Dulbecco’s modified Eagle’s medium.MSC immunophenotype of cultures were tracked along increasing passages for positivity to CD106,Sca-1 and CD44 and negativity to CD45,CD11b and MHC classⅡ.Differentiation capacity of MSC towards osteogenic and adipo-genic lineages were also assessed. RESULTS:MSC were successfully cultured from bone marrow of all 3 strains,albeit differences in the temporal expression of certain surface antigens.Their differentiation into osteocytes and adipocytes were also observed. MSC from all 3 mouse strains demonstrated a shift from a haematopoietic phenotype(CD106-CD45+CD11b+Sca-1low)to typical MSC phenotype(CD106+CD45-CD11b-Sca-1high)with increasing passages. CONCLUSION:Information garnered assists us in the decision of selecting a mouse strain to generate MSC from for downstream experimentation. 展开更多
关键词 mesenchymal stem cells Mouse bone marrow CBA/Ca STRAIN ICR STRAIN BALB/C STRAIN IMMUNOPHENOTYPING Differentiation
下载PDF
Exosomes derived from bone marrow mesenchymal stem cells inhibit neuroinflammation after traumatic brain injury 被引量:6
13
作者 Liang Wen Ya-Dong Wang +7 位作者 Dong-Feng Shen Pei-Dong Zheng Meng-Di Tu Wen-Dong You Yuan-Run Zhu Hao Wang Jun-Feng Feng Xiao-Feng Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第12期2717-2724,共8页
Exosomes derived from bone marrow mesenchymal stem cells can inhibit neuroinflammation through regulating microglial phenotypes and promoting nerve injury repair.However,the underlying molecular mechanism remains uncl... Exosomes derived from bone marrow mesenchymal stem cells can inhibit neuroinflammation through regulating microglial phenotypes and promoting nerve injury repair.However,the underlying molecular mechanism remains unclear.In this study,we investigated the mechanism by which exosomes derived from bone marrow mesenchymal stem cells inhibit neuroinflammation.Our in vitro co-culture experiments showed that bone marrow mesenchymal stem cells and their exosomes promoted the polarization of activated BV2 microglia to their anti-inflammatory phenotype,inhibited the expression of proinflammatory cytokines,and increased the expression of anti-inflammatory cytokines.Our in vivo experiments showed that tail vein injection of exosomes reduced cell apoptosis in cortical tissue of mouse models of traumatic brain injury,inhibited neuroinflammation,and promoted the transformation of microglia to the anti-inflammatory phenotype.We screened some microRNAs related to neuroinflammation using microRNA sequencing and found that microRNA-181b seemed to be actively involved in the process.Finally,we regulated the expression of miR181b in the brain tissue of mouse models of traumatic brain injury using lentiviral transfection.We found that miR181b overexpression effectively reduced apoptosis and neuroinflamatory response after traumatic brain injury and promoted the transformation of microglia to the anti-inflammatory phenotype.The interleukin 10/STAT3 pathway was activated during this process.These findings suggest that the inhibitory effects of exosomes derived from bone marrow mesenchymal stem cells on neuroinflamation after traumatic brain injury may be realized by the action of miR181b on the interleukin 10/STAT3 pathway. 展开更多
关键词 apoptosis bone marrow mesenchymal stem cells BV2 microglia EXOSOME interleukin 10 lentiviral transfection microRNA-181b NEUROINFLAMMATION phenotype signal transducer and activator of transcription 3 traumatic brain injury
下载PDF
Neuronal-like differentiation of bone marrow-derived mesenchymal stem cells induced by striatal extracts from a rat model of Parkinson's disease 被引量:3
14
作者 Xiaoling Qin Wang Han Zhigang Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第34期2673-2680,共8页
A rat model of Parkinson's disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and wer... A rat model of Parkinson's disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and were co-cultured with 10% and 60% lesioned or intact striatal extracts. The results showed that when exposed to lesioned striatal extracts, BMSCs developed bipolar or multi-polar morphologies, and there was an increase in the percentage of cells that expressed glial fibrillary acidic protein (GFAP), nestin and neuron-specific enolase (NSE). Moreover, the percentage of NSE-positive cells increased with increasing concentrations of lesioned striatal extracts. However, intact striatal extracts only increased the percentage of GFAP-positive cells. The findings suggest that striatal extracts from Parkinson's disease rats induce BMSCs to differentiate into neuronal-like cells in vitro. 展开更多
关键词 bone marrow-derived mesenchymal stem cell Parkinson's disease striatal extract induceddifferentiation nerve cell glial fibrillary acidic protein NESTIN neuron-specific enolase neural stemcell regeneration neural regeneration
下载PDF
Mesenchymal Stromal Cells Derived from Human Embryonic Stem Cells, Fetal Limb and Bone Marrow Share a Common Phenotype but Are Transcriptionally and Biologically Different 被引量:2
15
作者 Candida Vaz Betty Tan Bee Tee +2 位作者 Delicia Yong Qian Yi Lee Vivek Tanavde 《Stem Cell Discovery》 2017年第1期1-26,共26页
Mesenchymal stromal cells (MSCs) can be obtained from several sources and the significant differences in their properties make it crucial to investigate the differentiation potential of MSCs from different sources to ... Mesenchymal stromal cells (MSCs) can be obtained from several sources and the significant differences in their properties make it crucial to investigate the differentiation potential of MSCs from different sources to determine the optimal source of MSCs. We investigated if this biological heterogeneity in MSCs from different sources results in different mechanisms for their differentiation. In this study, we compared the gene expression patterns of phenotypically defined MSCs derived from three ontogenically different sources: Embryonic stem cells (hES-MSCs), Fetal limb (Flb-MSCs) and Bone Marrow (BM-MSCs). Differentially expressed genes between differentiated cells and undifferentiated controls were compared across the three MSC sources. We found minimal overlap (5% - 16%) in differentially expressed gene sets among the three sources. Flb-MSCs were similar to BM-MSCs based on differential gene expression patterns. Pathway analysis of the differentially expressed genes using Ingenuity Pathway Analysis (IPA) revealed a large variation in the canonical pathways leading to MSC differentiation. The similar canonical pathways among the three sources were lineage specific. The Flb-MSCs showed maximum overlap of canonical pathways with the BM-MSCs, indicating that the Flb-MSCs are an intermediate source between the less specialised hES-MSC source and the more specialised BM-MSC source. The source specific pathways prove that MSCs from the three ontogenically different sources use different biological pathways to obtain similar differentiation outcomes. Thus our study advocates the understanding of biological pathways to obtain optimal sources of MSCs for various clinical applications. 展开更多
关键词 mesenchymal Stromal cells (MSCs) Human Embryonic stem cells DERIVED MSCS (hES-MSCs) FETAL LIMB DERIVED MSCS (Flb-MSCs) bone marrow DERIVED MSCS (BM-MSCs) Ontogenically DIFFERENT Sources Source Specific Canonical Pathways
下载PDF
Easily-handled method to isolate mesenchymal stem cells from coagulated human bone marrow samples
16
作者 Heng-Xiang Wang Zhi-Yong Li +1 位作者 Zhi-Kun Guo Zi-Kuan Guo 《World Journal of Stem Cells》 SCIE CAS 2015年第8期1137-1144,共8页
AIM:To establish an easily-handled method to isolate mesenchymal stem cells(MSCs) from coagulated human bone marrow samples. METHODS: Thrombin was added to aliquots of seven heparinized human bone marrow samples to mi... AIM:To establish an easily-handled method to isolate mesenchymal stem cells(MSCs) from coagulated human bone marrow samples. METHODS: Thrombin was added to aliquots of seven heparinized human bone marrow samples to mimic marrow coagulation. The clots were untreated,treated with urokinase or mechanically cut into pieces before culture for MSCs. The un-coagulated samples and the clots were also stored at 4 ℃ for 8 or 16 h before the treatment. The numbers of colony-forming unit-fibroblast(CFU-F) in the different samples were determined. The adherent cells from different groups were passaged and their surface profile was analyzed with flow cytometry. Their capacities of in vitro osteogenesis and adipogenesis were observed after the cells were exposed to specific inductive agents.RESULTS: The average CFU-F number of urokinasetreated samples(16.85 ± 11.77/106) was comparable to that of un-coagulated control samples(20.22 ± 10.65/106,P = 0.293),which was significantly higher than those of mechanically-cut clots(6.5 ± 5.32/106,P < 0.01) and untreated clots(1.95 ± 1.86/106,P < 0.01). The CFU-F numbers decreased after samples were stored,but those of control and urokinase-treated clots remained higher than the other two groups. Consistently,the numbers of the attached cells at passage 0 were higher in control and urokinase-treated clots than those of mechanically-cut clots and untreated clots.The attached cells were fibroblast-like in morphology and homogenously positive for CD44,CD73 and CD90,and negative for CD31 and CD45. Also,they could be induced to differentiate into osteoblasts and adipocytes in vitro. CONCLUSION: Urokinase pretreatment is an optimal strategy to isolate MSCs from human bone marrow samples that are poorly aspirated and clotted. 展开更多
关键词 Coagulated marrow SAMPLE mesenchymal stem cells Is
下载PDF
Bone marrow-derived mesenchymal stem cell-derived exosomeloaded miR-129-5p targets high-mobility group box 1 attenuates neurological-impairment after diabetic cerebral hemorrhage 被引量:1
17
作者 Yue-Ying Wang Ke Li +5 位作者 Jia-Jun Wang Wei Hua Qi Liu Yu-Lan Sun Ji-Ping Qi Yue-Jia Song 《World Journal of Diabetes》 SCIE 2024年第9期1979-2001,共23页
BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patie... BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patients with diabetes are unknown.In this study,we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation.AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage.METHODS BMSC-exo were isolated from mouse BMSC media.This was followed by transfection with microRNA-129-5p(miR-129-5p).BMSC-exo or miR-129-5poverexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucoseaffected BV2 cells for in vitro analyses.The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1(HMGB1).Quantitative polymerase chain reaction,western blotting,and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors,such as HMGB1,interleukin 6,interleukin 1β,toll-like receptor 4,and tumor necrosis factorα.Brain water content,neural function deficit score,and Evans blue were used to measure the neural function of mice.RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery.MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation.Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases.Furthermore,we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA.CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes,thereby improving the neurological function of the brain. 展开更多
关键词 bone marrow mesenchymal stem cells Exosome Diabetic cerebral hemorrhage Neuroinflammation MicroRNA-129-5p High mobility group box 1
下载PDF
Improvement of neurological function in rats with spinal cord injury after the transplantation of neural stem cells directly differentiated from bone marrow mesenchymal stem cells
18
作者 张小宁 《外科研究与新技术》 2011年第4期290-290,共1页
Objective To study the effect and mechanism of neurological function recovery in rats with spinal cord injury ( SCI) rats after transplantation of neural stem cells which are directly differentiated from bone marrow m... Objective To study the effect and mechanism of neurological function recovery in rats with spinal cord injury ( SCI) rats after transplantation of neural stem cells which are directly differentiated from bone marrow mesenchymal stem cells ( BMSC ) ,and to investigate the suitable engraftment time. Methods BMSC at 3rd passage were differentiated into neural stem cells ( NSC) , and immunofluorescence staining was used to 展开更多
关键词 bone Improvement of neurological function in rats with spinal cord injury after the transplantation of neural stem cells directly differentiated from bone marrow mesenchymal stem cells stem
下载PDF
Exosomes derived from microRNA-540-3p overexpressing mesenchymal stem cells promote immune tolerance via the CD74/nuclear factor-kappaB pathway in cardiac allograft
19
作者 Ji-Gang He Xin-Xin Wu +3 位作者 Si Li Dan Yan Gao-Peng Xiao Fu-Gang Mao 《World Journal of Stem Cells》 SCIE 2024年第12期1022-1046,共25页
BACKGROUND Heart transplantation is a crucial intervention for severe heart failure,yet the challenge of organ rejection is significant.Bone marrow mesenchymal stem cells(BMSCs)and their exosomes have demonstrated pot... BACKGROUND Heart transplantation is a crucial intervention for severe heart failure,yet the challenge of organ rejection is significant.Bone marrow mesenchymal stem cells(BMSCs)and their exosomes have demonstrated potential in modulating T cells,dendtitic cells(DCs),and cytokines to achieve immunomodulatory effects.DCs,as key antigen-presenting cells,play a critical role in shaping immune responses by influencing T-cell activation and cytokine production.Through this modulation,BMSCs and their exosomes enhance graft tolerance and prolonging survival.AIM To explore the immunomodulatory effects of exosomes derived from BMSCs overexpressing microRNA-540-3p(miR-540-3p)on cardiac allograft tolerance,focusing on how these exosomes modulating DCs and T cells activity through the CD74/nuclear factor-kappaB(NF-κB)pathway.METHODS Rat models were used to assess the impact of miR-540-3p-enhanced exosomes on immune tolerance in cardiac allografts.MiR-540-3p expression was manipulated in BMSCs,and derived exosomes were collected and administered to the rat models post-heart transplantation.The study monitored expression levels of major histocompatibility complex II,CD80,CD86,and CD274 in DCs,and quantified CD4^(+)and CD8^(+)T cells,T regulatory cells,and cytokine profiles.RESULTS Exosomes from miR-540-3p-overexpressing BMSCs lead to reduced expression of immune activation markers CD74 and NF-κB p65 in DCs and T cells.Rats treated with these exosomes showed decreased inflammation and improved cardiac function,indicated by lower levels of pro-inflammatory cytokines(interleukin-1β,interferon-γ)and higher levels of anti-inflammatory cytokines(interleukin-10,transforming growth factorβ1).Additionally,miR-540-3p skewed the profiles of DCs and T cells towards immune tolerance,increasing the ratio of T regulatory cells and shifting cytokine secretion to favor graft acceptance.CONCLUSION Exosomes derived from BMSCs overexpressing miR-540-3p significantly enhance immune tolerance and prolong cardiac allograft survival by modulating the CD74/NF-κB pathway,which regulates activities of DCs and T cells.These findings highlight a promising therapeutic strategy to improve heart transplantation outcomes and potentially reduce the need for prolonged immunosuppression. 展开更多
关键词 bone marrow mesenchymal stem cells EXOSOMES MicroRNA-540-3p Cardiac allograft Immune tolerance
下载PDF
Interplay between mesenchymal stem cells and macrophages:Promoting bone tissue repair
20
作者 Fei-Fan Zhang Yang Hao +4 位作者 Kuai-Xiang Zhang Jiang-Jia Yang Zhi-Qiang Zhao Hong-Jian Liu Ji-Tian Li 《World Journal of Stem Cells》 SCIE 2024年第4期375-388,共14页
The repair of bone tissue damage is a complex process that is well-orchestrated in time and space,a focus and difficulty in orthopedic treatment.In recent years,the success of mesenchymal stem cells(MSCs)-mediated bon... The repair of bone tissue damage is a complex process that is well-orchestrated in time and space,a focus and difficulty in orthopedic treatment.In recent years,the success of mesenchymal stem cells(MSCs)-mediated bone repair in clinical trials of large-area bone defects and bone necrosis has made it a candidate in bone tissue repair engineering and regenerative medicine.MSCs are closely related to macrophages.On one hand,MSCs regulate the immune regulatory function by influencing macrophages proliferation,infiltration,and phenotype polarization,while also affecting the osteoclasts differentiation of macrophages.On the other hand,macrophages activate MSCs and mediate the multilineage differentiation of MSCs by regulating the immune microenvironment.The cross-talk between MSCs and macrophages plays a crucial role in regulating the immune system and in promoting tissue regeneration.Making full use of the relationship between MSCs and macrophages will enhance the efficacy of MSCs therapy in bone tissue repair,and will also provide a reference for further application of MSCs in other diseases. 展开更多
关键词 bone tissue damage INFLAMMATION MACROPHAGES mesenchymal stem cells Tissue regeneration
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部