Objective: To study the effects of bone marrow mesenchymal stem cell combined with platelet-rich plasma treatment of bone nonunion after long bone fracture surgery on bone metabolism and cytokines. Methods: Patients w...Objective: To study the effects of bone marrow mesenchymal stem cell combined with platelet-rich plasma treatment of bone nonunion after long bone fracture surgery on bone metabolism and cytokines. Methods: Patients who were treated in our hospital due to bone nonunion after long bone fracture surgery between March 2011 and October 2017 were selected and randomly divided into two groups, combined group received bone marrow mesenchymal stem cell combined with platelet-rich plasma therapy, and control group received bone marrow mesenchymal stem cell therapy. The levels of bone metabolism markers and growth cytokines in serum as well as the expression of bone metabolism-related signal molecules in peripheral blood were determined before treatment and 1 month after treatment. Results: Compared with those of same group before treatment, serum PINP, OPG, BALP, VEGF, TGF-β1, IGF-I, IGF-II and bFGF levels as well as peripheral blood Runx2, Wnt1, Wnt3a and β-catenin expression intensity of both groups of patients significantly increased whereas serum β-CTX and RANKL levels as well as peripheral blood NOX4 and NF-κB expression intensity significantly decreased after treatment, and serum PINP, OPG, BALP, VEGF, TGF-β1, IGF-I, IGF-II and bFGF levels as well as peripheral blood Runx2, Wnt1, Wnt3a and β-catenin expression intensity of combined group after treatment were higher than those of control group whereas serum β-CTX and RANKL levels as well as peripheral blood NOX4 and NF-κB expression intensity were lower than those of control group. Conclusion: Bone marrow mesenchymal stem cell combined with platelet-rich plasma treatment of bone nonunion after long bone fracture surgery can be more effective than bone marrow mesenchymal stem cell monotherapy to improve the bone metabolism and increase the cytokines.展开更多
BACKGROUND Bone marrow transplantation(BMT)can be applied to both hematopoietic and nonhematopoietic diseases;nonetheless,it still comes with a number of challenges and limitations that contribute to treatment failure...BACKGROUND Bone marrow transplantation(BMT)can be applied to both hematopoietic and nonhematopoietic diseases;nonetheless,it still comes with a number of challenges and limitations that contribute to treatment failure.Bearing this in mind,a possible way to increase the success rate of BMT would be cotransplantation of mesenchymal stem cells(MSCs)and hematopoietic stem cells(HSCs)to improve the bone marrow niche and secrete molecules that enhance the hematopoietic engraftment.AIM To analyze HSC and MSC characteristics and their interactions through cotransplantation in murine models.METHODS We searched for original articles indexed in PubMed and Scopus during the last decade that used HSC and MSC cotransplantation and in vivo BMT in animal models while evaluating cell engraftment.We excluded in vitro studies or studies that involved graft versus host disease or other hematological diseases and publications in languages other than English.In PubMed,we initially identified 555 articles and after selection,only 12 were chosen.In Scopus,2010 were identified,and six were left after the screening and eligibility process.RESULTS Of the 2565 articles found in the databases,only 18 original studies met the eligibility criteria.HSC distribution by source showed similar ratios,with human umbilical cord blood or animal bone marrow being administered mainly with a dose of 1×10^(7) cells by intravenous or intrabone routes.However,MSCs had a high prevalence of human donors with a variety of sources(umbilical cord blood,bone marrow,tonsil,adipose tissue or fetal lung),using a lower dose,mainly 106 cells and ranging 104 to 1.5×107 cells,utilizing the same routes.MSCs were characterized prior to administration in almost every experiment.The recipient used was mostly immunodeficient mice submitted to low-dose irradiation or chemotherapy.The main technique of engraftment for HSC and MSC cotransplantation evaluation was chimerism,followed by hematopoietic reconstitution and survival analysis.Besides the engraftment,homing and cellularity were also evaluated in some studies.CONCLUSION The preclinical findings validate the potential of MSCs to enable HSC engraftment in vivo in both xenogeneic and allogeneic hematopoietic cell transplantation animal models,in the absence of toxicity.展开更多
BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characte...BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characterized. Whereas MSCs from different tissue exhibit many common characteristics, their biological activity and some markers are different and depend on their tissue of origin. Understanding the factors that underlie MSC biology should constitute important points for consideration for researchers interested in clinical MSC application. AIM To characterize the biological activity of MSCs during longterm culture isolated from: bone marrow (BM-MSCs), adipose tissue (AT-MSCs), skeletal muscles (SMMSCs), and skin (SK-MSCs). METHODS MSCs were isolated from the tissues, cultured for 10 passages, and assessed for: phenotype with immunofluorescence and flow cytometry, multipotency with differentiation capacity for osteo-, chondro-, and adipogenesis, stemness markers with qPCR for mRNA for Sox2 and Oct4, and genetic stability for p53 and c-Myc;27 bioactive factors were screened using the multiplex ELISA array, and spontaneous fusion involving a co-culture of SM-MSCs with BM-MSCs or AT-MSCs stained with PKH26 (red) or PKH67 (green) was performed. RESULTS All MSCs showed the basic MSC phenotype;however, their expression decreased during the follow-up period, as confirmed by fluorescence intensity. The examined MSCs express CD146 marker associated with proangiogenic properties;however their expression decreased in AT-MSCs and SM-MSCs, but was maintained in BM-MSCs. In contrast, in SK-MSCs CD146 expression increased in late passages. All MSCs, except BM-MSCs, expressed PW1, a marker associated with differentiation capacity and apoptosis. BM-MSCs and AT-MSCs expressed stemness markers Sox2 and Oct4 in long-term culture. All MSCs showed a stable p53 and c-Myc expression. BM-MSCs and AT-MSCs maintained their differentiation capacity during the follow-up period. In contrast, SK-MSCs and SM-MSCs had a limited ability to differentiate into adipocytes. BM-MSCs and AT-MSCs revealed similarities in phenotype maintenance, capacity for multilineage differentiation, and secretion of bioactive factors. Because AT-MSCs fused with SM-MSCs as effectively as BM-MSCs, AT-MSCs may constitute an alternative source for BM-MSCs. CONCLUSION Long-term culture affects the biological activity of MSCs obtained from various tissues. The source of MSCs and number of passages are important considerations in regenerative medicine.展开更多
The cellular basis of bone marrow (BM) tissue development and regeneration is mediated through hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Local interplays between hematopoietic cells and ...The cellular basis of bone marrow (BM) tissue development and regeneration is mediated through hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Local interplays between hematopoietic cells and BM stromal cells (BMSCs) determine the reconstitution of hematopoiesis after myelosuppression. Here we review the BM local signals in control of BM regeneration after insults. Hematopoietic growth factors (HGFs) and cytokines produced by BMSCs are primary factors in regulation ofBM hematopoiesis. Morphogens which are critical to early embryo development in multiple species have been added to the family of HSCs regulators, including families of Wnt proteins, Notch ligands, BMPs, and Hedgehogs. Global gene expression analysis of HSCs and BMSCs has begun to reveal signature groups of genes for both cell types. More importantly, analysis of global gene expression coupled with biochemical and biological studies of local signals during BM regeneration have strongly suggested that HGFs and cytokines may not be the primary local regulators for BM recovery, rather chemokines (SDF- 1, FGF-4) and angiogenic growth factors (VEGF-A, Ang- 1) play instructive roles in BM reconstitution after myelosuppression. A new direction of management of BM toxicity is emerging from the identification of BM regenerative regulators.展开更多
Background Nowadays bone marrow represents the main source of mesenchymal stem cells (MSCs). We identified a new population of MSCs derived from human placenta and compared its biological characterization with bone ma...Background Nowadays bone marrow represents the main source of mesenchymal stem cells (MSCs). We identified a new population of MSCs derived from human placenta and compared its biological characterization with bone marrow derived MSCs.Methods Mononucleated cells (MNC) were isolated from the human placenta tissue perfusate by density gradient fractionation. Individual colonies were selected and cultured in tissue dishes. At the same time,human bone marrow derived MSCs were identified. Culture-expanded cells were characterized by immune phenotyping and cultured under conditions promoting differetiation to osteoblasts or adipocytes. The hematopoietic cytokines were assayed using reverse transcriptase polymerase chain reaction (RT-PCR). Results Human placental MSCs exhibited fibroblastoid morphology. Flow cytometric analyses showed that the placental MSC were CD29,CD44,CD73,CD105,CD166,HLA-ABC positive; but were negative for CD34,CD45,and HLA-DR. Functionally,they could be induced into adipocytes or osteocytes. Moreover,several hematopoietic cytokine mRNA was found in placenta-derived MSCs by RT-PCR analysis,including IL-6,M-CSF,Flt3-ligand and SCF. These results were consistent with the properties of bone marrow derived MSCs.Conclusion These observations implicate the postpartum human placenta as an important and novel source of multipotent stem cells that could potentially be used for investigating mesenchymal differentiation and regulation of hematopoiesis.展开更多
Balanced sphingolipid signaling is important for the maintenance of homeostasis. Sphingolipids were demonstrated to function as structural components, second messengers, and regulators of cell growth and survival in n...Balanced sphingolipid signaling is important for the maintenance of homeostasis. Sphingolipids were demonstrated to function as structural components, second messengers, and regulators of cell growth and survival in normal and disease-affected tissues. Particularly, sphingosine kinase 1 (SphK1) and its product sphingosine-1-phosphate (S1P) operate as mediators and facilitators of proliferation-linked signaling. Unlimited proliferation (selfrenewal) within the regulated environment is a hallmark of progenitor/stem cells that was recently associated with the S1P signaling network in vasculature, nervous,muscular, and immune systems. S1P was shown to regulate progenitor-related characteristics in normal and cancerstemcells(CSCs) viaG-protein coupled receptorsS1Pn(n=1 to 5). The SphK/S1P axis is crucially involved in the regulation of embryonic development of vasculature and the nervous system, hematopoietic stem cell migration, regeneration of skeletal muscle, and development of multiple sclerosis. The ratio of the S1P receptor expression, localization, and specific S1P receptoractivated downstream effectors influenced the rate of selfrenewal and should be further explored as regeneration related targets. Considering malignant transformation,it is essential to control the level of self-renewal capacity.Proliferation of the progenitor cell should be synchronized with differentiation to provide healthy lifelong function of blood, immune systems, and replacement of damaged ordead cells. The differentiation-related role of SphK/S1P remains poorly assessed. A few pioneering investigations exploredpharmacologicaltoolsthattargetsphingolipid signaling and can potentially confine and direct self-renewal towards normal differentiation. Further investigation is required to test the role of the SphK/S1P axis in regulation of self-renewal and differentiation.展开更多
Musculoskeletal disorders are the leading causes of disability and result in reduced quality of life.The neuro-osteogenic network is one of the most promising fields in orthopaedic research.Neuropeptide Y(NPY)system h...Musculoskeletal disorders are the leading causes of disability and result in reduced quality of life.The neuro-osteogenic network is one of the most promising fields in orthopaedic research.Neuropeptide Y(NPY)system has been reported to be involved in the regulations of bone metabolism and homeostasis,which also provide feedback to the central NPY system via NPY receptors.Currently,potential roles of peripheral NPY in bone metabolism remain unclear.Growing evidence suggests that NPY can regulate biological actions of bone marrow mesenchymal stem cells,hematopoietic stem cells,endothelial cells,and chondrocytes via a local autocrine or paracrine manner by different NPY receptors.The regulative activities of NPY may be achieved through the plasticity of NPY receptors,and interactions among the targeted cells as well.In general,NPY can influence proliferation,apoptosis,differentiation,migration,mobilization,and cytokine secretion of different types of cells,and play crucial roles in the development of bone delayed/non-union,osteoporosis,and osteoarthritis.Further basic research should clarify detailed mechanisms of action of NPY on stem cells,and clinical investigations are also necessary to comprehensively evaluate potential applications of NPY and its receptor-targeted drugs in management of musculoskeletal disorders.展开更多
Research in stem cells is one of the most rapidly evolving fields of investigation in medicine today. Stem cells are defined as cells that have the capacity to both generate daughter cells identical to the cell of ori...Research in stem cells is one of the most rapidly evolving fields of investigation in medicine today. Stem cells are defined as cells that have the capacity to both generate daughter cells identical to the cell of origin (self-renewal) and to produce progeny with more restricted, specialized potential (differentiated cells). This dual ability to self-renew and differentiate offers great promise for expanding our understanding of organ systems, elucidating disease pathophysiology, and creating therapeutic approaches to difficult diseases. The goal of this review is to offer an overview of the different types of stem cells and to provide an introduction to the applications of stem cells to the field of obstetrics and gynecology.展开更多
AIM: To identify the key cytokines involved in hepatic differentiation of mouse bone marrow mesenchymal stem cells (mBM-MSCs) under liver-injury conditions. METHODS: Abdominal injection of CCl4 was adopted to duplicat...AIM: To identify the key cytokines involved in hepatic differentiation of mouse bone marrow mesenchymal stem cells (mBM-MSCs) under liver-injury conditions. METHODS: Abdominal injection of CCl4 was adopted to duplicate a mouse acute liver injury model. Global gene expression analysis was performed to evaluate the potential genes involved in hepatic commitment under liver-injury conditions. The cytokines involved in hepatic differentiation of mBM-MSCs was function-ally examined by depletion experiment using specifi c antibodies, followed by rescue experiment and direct inducing assay. The hepatic differentiation was characterized by the expression of hepatic lineage genes and proteins, as well as functional features. RESULTS: Cytokines potentially participating in hepatic fate commitment under liver-injury conditions were initially measured by microarray. Among the up-regulated genes determined, 18 cytokines known to closely relate to liver growth, repair and development, were selected for further identif ication. The f ibroblast growth factor-4 (FGF-4), hepatocyte growth factor (HGF) and oncostatin M (OSM) were fi nally found to be involved in hepatic differentiation of mBM-MSCs under liver-injury conditions. Hepatic differentiation could be dramatically decreased after removing FGF-4, HGF and OSM from the liver-injury conditioned medium, and could be rescued by supplementing these cytokines. The FGF-4, HGF and OSM play different roles in the hepatic differentiation of mBM-MSCs, in which FGF-4 and HGF are essential for the initiation of hepatic differentiation, while OSM is critical for the maturation of hepatocytes. CONCLUSION: FGF-4, HGF and OSM are the key cytokines involved in the liver-injury conditioned medium for the hepatic differentiation of mBM-MSCs.展开更多
Background Bone morphogenetic protein (BMP) is a member of the superfamily of transforming growth factor-13. Recent studies show that it is an indispensable factor in hematopoiesis. To better characterize the effect...Background Bone morphogenetic protein (BMP) is a member of the superfamily of transforming growth factor-13. Recent studies show that it is an indispensable factor in hematopoiesis. To better characterize the effect of recombinant human BMP (rhBMP)-2 in hematopoiesis, we set out to determine whether rhBMP-2 could promote the proliferation of mesenchymal stem cells (MSCs) and increase the levels of hematopoietic cytokines in MSCs. Methods 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-((phenylamino) carbonyl)-2H-tetrazolium hydroxide (XTT), real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the effects of rhBMP-2 on the proliferation and hematopoietic cytokine levels of MSCs. In addition, MSCs marked with Hoechst33342 were transplanted into BALB/c mice by the intravenous route or intra-bone marrow transplantation, and cluster numbers were counted. Results The XTT test revealed that rhBMP-2 significantly induced proliferation of MSCs in doses ranging from 10 ng/ml to 0.1 mg/ml in a dose-dependent manner. The experiments in vivo showed that there were more clusters of donor cells in bone marrow, spleen, liver and lung of the BMP group than those in the control group after both intra-bone marrow transplantation (P 〈0.001, P 〈0.001, P 〈0.001, and P=0.001, respectively) and intravenous transplantation (P 〈0.001, P 〈0.001, and P 〈0.001 respectively). The results of real-time PCR and ELISA revealed that rhBMP-2 significantly increased mRNA expressions and protein levels of IL-6, IL-7, IL-11, G-CSF, M-CSF and SCF. Conclusions The treatment with rhBMP-2 promotes the proliferation of MSCs in vivo and in vitro and increases the levels of hematopoietic cytokines in MSCs, which may contribute to the improvement of hematopoietic function.展开更多
Hematopoietic syndrome of acute radiation syndrome(h-ARS)is an acute illness resulted from the damage of bone marrow(BM)microenvironment after exposure to radiation.Currently,the clinical management of h-ARS is limite...Hematopoietic syndrome of acute radiation syndrome(h-ARS)is an acute illness resulted from the damage of bone marrow(BM)microenvironment after exposure to radiation.Currently,the clinical management of h-ARS is limited to medication-assisted treatment,while there is still no specific therapy for the hematopoietic injury from high-dose radiation exposure.Our study aimed to assemble biomimetic three-dimensional(3D)BM microniches by co-culture of hematopoietic stem and progenitor cells(HSPCs)and mesenchymal stem cells(MSCs)in porous,injectable and viscoelastic microscaffolds in vitro.The biodegradable BM microniches were then transplanted in vivo into the BM cavity for the treatment of h-ARS.We demonstrated that the maintenance of HSPCs was prolonged by co-culture with MSCs in the porous 3D microscaffolds with 84μm in pore diameter and 11.2 kPa in Young’s modulus compared with 2D co-culture system.Besides,the minimal effective dose and therapeutic effects of the BM microniches were investigated on a murine model of h-ARS,which showed that the intramedullary cavity-injected BM microniches could adequately promote hematopoietic reconstitution and mitigate death from acute lethal radiation with a dose as low as 1000 HSPCs.Furthermore,the mRNA expression of Notch1 and its downstream target gene Hes1 of HSPCs were increased when co-cultured with MSCs,while the Jagged1 expression of the co-cultured MSCs was upregulated,indicating the significance of Notch signaling pathway in maintenance of HSPCs.Collectively,our findings provide evidence that biomimetic and injectable 3D BM microniches could maintain HSPCs,promote hematopoiesis regeneration and alleviate post-radiation injury,which provides a promising approach to renovate conventional HSPCs transplantation for clinical treatment of blood and immune disorders.展开更多
文摘Objective: To study the effects of bone marrow mesenchymal stem cell combined with platelet-rich plasma treatment of bone nonunion after long bone fracture surgery on bone metabolism and cytokines. Methods: Patients who were treated in our hospital due to bone nonunion after long bone fracture surgery between March 2011 and October 2017 were selected and randomly divided into two groups, combined group received bone marrow mesenchymal stem cell combined with platelet-rich plasma therapy, and control group received bone marrow mesenchymal stem cell therapy. The levels of bone metabolism markers and growth cytokines in serum as well as the expression of bone metabolism-related signal molecules in peripheral blood were determined before treatment and 1 month after treatment. Results: Compared with those of same group before treatment, serum PINP, OPG, BALP, VEGF, TGF-β1, IGF-I, IGF-II and bFGF levels as well as peripheral blood Runx2, Wnt1, Wnt3a and β-catenin expression intensity of both groups of patients significantly increased whereas serum β-CTX and RANKL levels as well as peripheral blood NOX4 and NF-κB expression intensity significantly decreased after treatment, and serum PINP, OPG, BALP, VEGF, TGF-β1, IGF-I, IGF-II and bFGF levels as well as peripheral blood Runx2, Wnt1, Wnt3a and β-catenin expression intensity of combined group after treatment were higher than those of control group whereas serum β-CTX and RANKL levels as well as peripheral blood NOX4 and NF-κB expression intensity were lower than those of control group. Conclusion: Bone marrow mesenchymal stem cell combined with platelet-rich plasma treatment of bone nonunion after long bone fracture surgery can be more effective than bone marrow mesenchymal stem cell monotherapy to improve the bone metabolism and increase the cytokines.
基金Supported by CNPq,No.308901/2020,No.400856/2016-6FAPESP,No.2019/21070-3,No.2017/17868-4,No.2016/21470-3+2 种基金SisNANO 2.0/MCTIC,No.442539/2019-3the National Institute of Science and Technology Complex Fluids(INCT-FCx)“Amigos da Oncologia e Hematologia Einstein”AMIGOH.
文摘BACKGROUND Bone marrow transplantation(BMT)can be applied to both hematopoietic and nonhematopoietic diseases;nonetheless,it still comes with a number of challenges and limitations that contribute to treatment failure.Bearing this in mind,a possible way to increase the success rate of BMT would be cotransplantation of mesenchymal stem cells(MSCs)and hematopoietic stem cells(HSCs)to improve the bone marrow niche and secrete molecules that enhance the hematopoietic engraftment.AIM To analyze HSC and MSC characteristics and their interactions through cotransplantation in murine models.METHODS We searched for original articles indexed in PubMed and Scopus during the last decade that used HSC and MSC cotransplantation and in vivo BMT in animal models while evaluating cell engraftment.We excluded in vitro studies or studies that involved graft versus host disease or other hematological diseases and publications in languages other than English.In PubMed,we initially identified 555 articles and after selection,only 12 were chosen.In Scopus,2010 were identified,and six were left after the screening and eligibility process.RESULTS Of the 2565 articles found in the databases,only 18 original studies met the eligibility criteria.HSC distribution by source showed similar ratios,with human umbilical cord blood or animal bone marrow being administered mainly with a dose of 1×10^(7) cells by intravenous or intrabone routes.However,MSCs had a high prevalence of human donors with a variety of sources(umbilical cord blood,bone marrow,tonsil,adipose tissue or fetal lung),using a lower dose,mainly 106 cells and ranging 104 to 1.5×107 cells,utilizing the same routes.MSCs were characterized prior to administration in almost every experiment.The recipient used was mostly immunodeficient mice submitted to low-dose irradiation or chemotherapy.The main technique of engraftment for HSC and MSC cotransplantation evaluation was chimerism,followed by hematopoietic reconstitution and survival analysis.Besides the engraftment,homing and cellularity were also evaluated in some studies.CONCLUSION The preclinical findings validate the potential of MSCs to enable HSC engraftment in vivo in both xenogeneic and allogeneic hematopoietic cell transplantation animal models,in the absence of toxicity.
基金the National Science Center,No.N407121940the Wroclaw Centre of Biotechnology,the Leading National Research Centre(KNOW)program for the years 2014-2018
文摘BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characterized. Whereas MSCs from different tissue exhibit many common characteristics, their biological activity and some markers are different and depend on their tissue of origin. Understanding the factors that underlie MSC biology should constitute important points for consideration for researchers interested in clinical MSC application. AIM To characterize the biological activity of MSCs during longterm culture isolated from: bone marrow (BM-MSCs), adipose tissue (AT-MSCs), skeletal muscles (SMMSCs), and skin (SK-MSCs). METHODS MSCs were isolated from the tissues, cultured for 10 passages, and assessed for: phenotype with immunofluorescence and flow cytometry, multipotency with differentiation capacity for osteo-, chondro-, and adipogenesis, stemness markers with qPCR for mRNA for Sox2 and Oct4, and genetic stability for p53 and c-Myc;27 bioactive factors were screened using the multiplex ELISA array, and spontaneous fusion involving a co-culture of SM-MSCs with BM-MSCs or AT-MSCs stained with PKH26 (red) or PKH67 (green) was performed. RESULTS All MSCs showed the basic MSC phenotype;however, their expression decreased during the follow-up period, as confirmed by fluorescence intensity. The examined MSCs express CD146 marker associated with proangiogenic properties;however their expression decreased in AT-MSCs and SM-MSCs, but was maintained in BM-MSCs. In contrast, in SK-MSCs CD146 expression increased in late passages. All MSCs, except BM-MSCs, expressed PW1, a marker associated with differentiation capacity and apoptosis. BM-MSCs and AT-MSCs expressed stemness markers Sox2 and Oct4 in long-term culture. All MSCs showed a stable p53 and c-Myc expression. BM-MSCs and AT-MSCs maintained their differentiation capacity during the follow-up period. In contrast, SK-MSCs and SM-MSCs had a limited ability to differentiate into adipocytes. BM-MSCs and AT-MSCs revealed similarities in phenotype maintenance, capacity for multilineage differentiation, and secretion of bioactive factors. Because AT-MSCs fused with SM-MSCs as effectively as BM-MSCs, AT-MSCs may constitute an alternative source for BM-MSCs. CONCLUSION Long-term culture affects the biological activity of MSCs obtained from various tissues. The source of MSCs and number of passages are important considerations in regenerative medicine.
文摘The cellular basis of bone marrow (BM) tissue development and regeneration is mediated through hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Local interplays between hematopoietic cells and BM stromal cells (BMSCs) determine the reconstitution of hematopoiesis after myelosuppression. Here we review the BM local signals in control of BM regeneration after insults. Hematopoietic growth factors (HGFs) and cytokines produced by BMSCs are primary factors in regulation ofBM hematopoiesis. Morphogens which are critical to early embryo development in multiple species have been added to the family of HSCs regulators, including families of Wnt proteins, Notch ligands, BMPs, and Hedgehogs. Global gene expression analysis of HSCs and BMSCs has begun to reveal signature groups of genes for both cell types. More importantly, analysis of global gene expression coupled with biochemical and biological studies of local signals during BM regeneration have strongly suggested that HGFs and cytokines may not be the primary local regulators for BM recovery, rather chemokines (SDF- 1, FGF-4) and angiogenic growth factors (VEGF-A, Ang- 1) play instructive roles in BM reconstitution after myelosuppression. A new direction of management of BM toxicity is emerging from the identification of BM regenerative regulators.
文摘Background Nowadays bone marrow represents the main source of mesenchymal stem cells (MSCs). We identified a new population of MSCs derived from human placenta and compared its biological characterization with bone marrow derived MSCs.Methods Mononucleated cells (MNC) were isolated from the human placenta tissue perfusate by density gradient fractionation. Individual colonies were selected and cultured in tissue dishes. At the same time,human bone marrow derived MSCs were identified. Culture-expanded cells were characterized by immune phenotyping and cultured under conditions promoting differetiation to osteoblasts or adipocytes. The hematopoietic cytokines were assayed using reverse transcriptase polymerase chain reaction (RT-PCR). Results Human placental MSCs exhibited fibroblastoid morphology. Flow cytometric analyses showed that the placental MSC were CD29,CD44,CD73,CD105,CD166,HLA-ABC positive; but were negative for CD34,CD45,and HLA-DR. Functionally,they could be induced into adipocytes or osteocytes. Moreover,several hematopoietic cytokine mRNA was found in placenta-derived MSCs by RT-PCR analysis,including IL-6,M-CSF,Flt3-ligand and SCF. These results were consistent with the properties of bone marrow derived MSCs.Conclusion These observations implicate the postpartum human placenta as an important and novel source of multipotent stem cells that could potentially be used for investigating mesenchymal differentiation and regulation of hematopoiesis.
文摘Balanced sphingolipid signaling is important for the maintenance of homeostasis. Sphingolipids were demonstrated to function as structural components, second messengers, and regulators of cell growth and survival in normal and disease-affected tissues. Particularly, sphingosine kinase 1 (SphK1) and its product sphingosine-1-phosphate (S1P) operate as mediators and facilitators of proliferation-linked signaling. Unlimited proliferation (selfrenewal) within the regulated environment is a hallmark of progenitor/stem cells that was recently associated with the S1P signaling network in vasculature, nervous,muscular, and immune systems. S1P was shown to regulate progenitor-related characteristics in normal and cancerstemcells(CSCs) viaG-protein coupled receptorsS1Pn(n=1 to 5). The SphK/S1P axis is crucially involved in the regulation of embryonic development of vasculature and the nervous system, hematopoietic stem cell migration, regeneration of skeletal muscle, and development of multiple sclerosis. The ratio of the S1P receptor expression, localization, and specific S1P receptoractivated downstream effectors influenced the rate of selfrenewal and should be further explored as regeneration related targets. Considering malignant transformation,it is essential to control the level of self-renewal capacity.Proliferation of the progenitor cell should be synchronized with differentiation to provide healthy lifelong function of blood, immune systems, and replacement of damaged ordead cells. The differentiation-related role of SphK/S1P remains poorly assessed. A few pioneering investigations exploredpharmacologicaltoolsthattargetsphingolipid signaling and can potentially confine and direct self-renewal towards normal differentiation. Further investigation is required to test the role of the SphK/S1P axis in regulation of self-renewal and differentiation.
基金Supported by the National Natural Science Foundation of China,No.81830079Guangzhou Health Science and Technology Project,No.20191A011116Science and Technology Project of Guangzhou Huadu District,No.18-HDWS-003.
文摘Musculoskeletal disorders are the leading causes of disability and result in reduced quality of life.The neuro-osteogenic network is one of the most promising fields in orthopaedic research.Neuropeptide Y(NPY)system has been reported to be involved in the regulations of bone metabolism and homeostasis,which also provide feedback to the central NPY system via NPY receptors.Currently,potential roles of peripheral NPY in bone metabolism remain unclear.Growing evidence suggests that NPY can regulate biological actions of bone marrow mesenchymal stem cells,hematopoietic stem cells,endothelial cells,and chondrocytes via a local autocrine or paracrine manner by different NPY receptors.The regulative activities of NPY may be achieved through the plasticity of NPY receptors,and interactions among the targeted cells as well.In general,NPY can influence proliferation,apoptosis,differentiation,migration,mobilization,and cytokine secretion of different types of cells,and play crucial roles in the development of bone delayed/non-union,osteoporosis,and osteoarthritis.Further basic research should clarify detailed mechanisms of action of NPY on stem cells,and clinical investigations are also necessary to comprehensively evaluate potential applications of NPY and its receptor-targeted drugs in management of musculoskeletal disorders.
文摘Research in stem cells is one of the most rapidly evolving fields of investigation in medicine today. Stem cells are defined as cells that have the capacity to both generate daughter cells identical to the cell of origin (self-renewal) and to produce progeny with more restricted, specialized potential (differentiated cells). This dual ability to self-renew and differentiate offers great promise for expanding our understanding of organ systems, elucidating disease pathophysiology, and creating therapeutic approaches to difficult diseases. The goal of this review is to offer an overview of the different types of stem cells and to provide an introduction to the applications of stem cells to the field of obstetrics and gynecology.
基金Supported by The Grant of Medicine and Health Key Projects of Zhejiang Province, Science and Technology Fund of Ministry of Health of the People’s Republic of China, No. WKJ2007-2-037Shaoxing Key Project for Science and Technology, No. 2007A23008the Natural Science Foundation of Zhejiang Province, China, No. Y2090337
文摘AIM: To identify the key cytokines involved in hepatic differentiation of mouse bone marrow mesenchymal stem cells (mBM-MSCs) under liver-injury conditions. METHODS: Abdominal injection of CCl4 was adopted to duplicate a mouse acute liver injury model. Global gene expression analysis was performed to evaluate the potential genes involved in hepatic commitment under liver-injury conditions. The cytokines involved in hepatic differentiation of mBM-MSCs was function-ally examined by depletion experiment using specifi c antibodies, followed by rescue experiment and direct inducing assay. The hepatic differentiation was characterized by the expression of hepatic lineage genes and proteins, as well as functional features. RESULTS: Cytokines potentially participating in hepatic fate commitment under liver-injury conditions were initially measured by microarray. Among the up-regulated genes determined, 18 cytokines known to closely relate to liver growth, repair and development, were selected for further identif ication. The f ibroblast growth factor-4 (FGF-4), hepatocyte growth factor (HGF) and oncostatin M (OSM) were fi nally found to be involved in hepatic differentiation of mBM-MSCs under liver-injury conditions. Hepatic differentiation could be dramatically decreased after removing FGF-4, HGF and OSM from the liver-injury conditioned medium, and could be rescued by supplementing these cytokines. The FGF-4, HGF and OSM play different roles in the hepatic differentiation of mBM-MSCs, in which FGF-4 and HGF are essential for the initiation of hepatic differentiation, while OSM is critical for the maturation of hepatocytes. CONCLUSION: FGF-4, HGF and OSM are the key cytokines involved in the liver-injury conditioned medium for the hepatic differentiation of mBM-MSCs.
基金This work was supported by a grant from the National Natural Science Foundation of China (No. 30470528).Acknowledgments: We thank Prof. ZHANG Shao-zhang and Prof. LU Fan (senior laboratorian) in the Fourth Military Medical University, China for their technical instructions and Prof. PU Qin for providing the rhBMP-2.
文摘Background Bone morphogenetic protein (BMP) is a member of the superfamily of transforming growth factor-13. Recent studies show that it is an indispensable factor in hematopoiesis. To better characterize the effect of recombinant human BMP (rhBMP)-2 in hematopoiesis, we set out to determine whether rhBMP-2 could promote the proliferation of mesenchymal stem cells (MSCs) and increase the levels of hematopoietic cytokines in MSCs. Methods 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-((phenylamino) carbonyl)-2H-tetrazolium hydroxide (XTT), real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the effects of rhBMP-2 on the proliferation and hematopoietic cytokine levels of MSCs. In addition, MSCs marked with Hoechst33342 were transplanted into BALB/c mice by the intravenous route or intra-bone marrow transplantation, and cluster numbers were counted. Results The XTT test revealed that rhBMP-2 significantly induced proliferation of MSCs in doses ranging from 10 ng/ml to 0.1 mg/ml in a dose-dependent manner. The experiments in vivo showed that there were more clusters of donor cells in bone marrow, spleen, liver and lung of the BMP group than those in the control group after both intra-bone marrow transplantation (P 〈0.001, P 〈0.001, P 〈0.001, and P=0.001, respectively) and intravenous transplantation (P 〈0.001, P 〈0.001, and P 〈0.001 respectively). The results of real-time PCR and ELISA revealed that rhBMP-2 significantly increased mRNA expressions and protein levels of IL-6, IL-7, IL-11, G-CSF, M-CSF and SCF. Conclusions The treatment with rhBMP-2 promotes the proliferation of MSCs in vivo and in vitro and increases the levels of hematopoietic cytokines in MSCs, which may contribute to the improvement of hematopoietic function.
文摘Hematopoietic syndrome of acute radiation syndrome(h-ARS)is an acute illness resulted from the damage of bone marrow(BM)microenvironment after exposure to radiation.Currently,the clinical management of h-ARS is limited to medication-assisted treatment,while there is still no specific therapy for the hematopoietic injury from high-dose radiation exposure.Our study aimed to assemble biomimetic three-dimensional(3D)BM microniches by co-culture of hematopoietic stem and progenitor cells(HSPCs)and mesenchymal stem cells(MSCs)in porous,injectable and viscoelastic microscaffolds in vitro.The biodegradable BM microniches were then transplanted in vivo into the BM cavity for the treatment of h-ARS.We demonstrated that the maintenance of HSPCs was prolonged by co-culture with MSCs in the porous 3D microscaffolds with 84μm in pore diameter and 11.2 kPa in Young’s modulus compared with 2D co-culture system.Besides,the minimal effective dose and therapeutic effects of the BM microniches were investigated on a murine model of h-ARS,which showed that the intramedullary cavity-injected BM microniches could adequately promote hematopoietic reconstitution and mitigate death from acute lethal radiation with a dose as low as 1000 HSPCs.Furthermore,the mRNA expression of Notch1 and its downstream target gene Hes1 of HSPCs were increased when co-cultured with MSCs,while the Jagged1 expression of the co-cultured MSCs was upregulated,indicating the significance of Notch signaling pathway in maintenance of HSPCs.Collectively,our findings provide evidence that biomimetic and injectable 3D BM microniches could maintain HSPCs,promote hematopoiesis regeneration and alleviate post-radiation injury,which provides a promising approach to renovate conventional HSPCs transplantation for clinical treatment of blood and immune disorders.