期刊文献+
共找到878篇文章
< 1 2 44 >
每页显示 20 50 100
Interplay between mesenchymal stromal cells and the immune system after transplantation: implications for advanced cell therapy in the retina
1
作者 María Norte-Muñoz David García-Bernal +2 位作者 Diego García-Ayuso Manuel Vidal-Sanz Marta Agudo-Barriuso 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期542-547,共6页
Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the und... Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation. 展开更多
关键词 adaptive immunity cell therapy central nervous system immune system innate immunity mesenchymal stromal cells NEUROREGENERATION preclinical studies RETINA TRANSPLANTATION
下载PDF
O-linkedβ-N-acetylglucosaminylation may be a key regulatory factor in promoting osteogenic differentiation of bone marrow mesenchymal stromal cells
2
作者 Xu-Chang Zhou Guo-Xin Ni 《World Journal of Stem Cells》 SCIE 2024年第3期228-231,共4页
Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors ... Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors have been gradually elucidated,the potential mechanisms of O-GlcNAcylation in bone metabolism,particularly,in the osteogenic differentiation of bone marrow mesenchymal stromal cells(BMSCs)remains unexplored.In this study,the literature related to O-GlcNAcylation and BMSC osteogenic differentiation was reviewed,assuming that it could trigger more scholars to focus on research related to OGlcNAcylation and bone metabolism and provide insights into the development of novel therapeutic targets for bone metabolism disorders such as osteoporosis. 展开更多
关键词 O-GLCNACYLATION Osteogenic differentiation Bone marrow mesenchymal stromal cells OSTEOPOROSIS
下载PDF
Exosomes from umbilical cord mesenchymal stromal cells promote the collagen production of fibroblasts from pelvic organ prolapse
3
作者 Lei-Mei Xu Xin-Xin Yu +1 位作者 Ning Zhang Yi-Song Chen 《World Journal of Stem Cells》 SCIE 2024年第6期708-727,共20页
BACKGROUND Pelvic organ prolapse(POP)involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity,and vaginal structure is an essential factor.In POP,the vaginal walls exhibit abnormal collagen d... BACKGROUND Pelvic organ prolapse(POP)involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity,and vaginal structure is an essential factor.In POP,the vaginal walls exhibit abnormal collagen distribution and decreased fibroblast levels and functions.The intricate etiology of POP and the prohibition of trans-vaginal meshes in pelvic reconstruction surgery present challenges in targeted therapy development.Human umbilical cord mesenchymal stromal cells(hucMSCs)present limitations,but their exosomes(hucMSC-Exo)are promising therapeutic tools for promoting fibroblast proliferation and extracellular matrix remodeling.suppressed inflammation in POP group fibroblasts,stimulated primary fibroblast growth,and elevated collagen I(Col1)production in vitro.High-throughput RNA-seq of fibroblasts treated with hucMSC-Exo and miRNA sequencing of hucMSC-Exo revealed that abundant exosomal miRNAs downregulated matrix metalloproteinase 11(MMP11)expression.CONCLUSION HucMSC-Exo normalized the growth and function of primary fibroblasts from patients with POP by promoting cell growth and Col1 expression in vitro.Abundant miRNAs in hucMSC-Exo targeted and downregulated MMP11 expression.HucMSC-Exo-based therapy may be ideal for safely and effectively treating POP. 展开更多
关键词 Pelvic organ prolapse EXOSOMES FIBROBLASTS Human umbilical cord mesenchymal stromal cells Extracellular matrix Collagen I
下载PDF
Mesenchymal stromal cells modulate unfolded protein response and preserve β-cell mass in type 1 diabetes
4
作者 SIYUAN LIU YUAN ZHAO +4 位作者 YU YU DOU YE QIAN WANG ZHAOYAN WANG ZUO LUAN 《BIOCELL》 SCIE 2024年第7期1115-1126,共12页
Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein re... Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein response inβcells remains unclear.Methods:To investigate this,we induced early-onset T1D in non-obese diabetic mice using streptozotocin.Subsequently,T1D mice were randomly assigned to receive either MSCs or phosphate-buffered saline.We observed the in vivo homing of MSCs and assessed their effectiveness by analyzing blood glucose levels,body weight,histopathology,pancreatic protein expression,and serum levels of cytokines,proinsulin,and C-peptide.Results:Infused MSCs were found in the lungs,liver,spleen,and pancreas of T1D mice.They exhibited various effects,including reducing blood glucose levels,regulating immunity,inhibiting inflammation,increasingβ-cell areas,and reducing the expression of key proteins in the unfolded protein response pathway.Fasting serum proinsulin and C-peptide levels were significantly higher in the MSCs treatment group than in the T1D model group.However,there was no significant difference in the biomarker ofβ-cell endoplasmic reticulum stress,the ratio of fasting serum proinsulin to C-peptide,between the two groups.Conclusion:Ourfindings reveal that MSCs infusion does not alleviate endoplasmic reticulum stress inβcells directly but modulates the unfolded protein response pathway to preserveβ-cell mass and function in T1D mice. 展开更多
关键词 Type 1 diabetes mesenchymal stromal cells Endoplasmic reticulum stress Unfolded protein response Non-obese diabetic mice
下载PDF
Mesenchymal Stromal Cells and Their Uses in Bio-Regenerative Therapies for Bone and Cartilage: A Review
5
作者 Nathan Smernoff 《Open Journal of Regenerative Medicine》 2024年第1期1-19,共19页
Mesenchymal stromal cells (MSCs) are a top candidate for new clinical treatments in the repair of bone and cartilage. In several clinical trials, they have shown reliable, effective, and safe management of inflammatio... Mesenchymal stromal cells (MSCs) are a top candidate for new clinical treatments in the repair of bone and cartilage. In several clinical trials, they have shown reliable, effective, and safe management of inflammation, pain, and the regenerative capabilities of resident tissues. MSCs are likely derived from pericytes. They modulate the environment they are placed in by secreting immunomodulatory and signaling molecules to reduce inflammation and direct resident cells to create new tissues. They are easily isolated from several different adult tissues, and inexpensive to grow in a lab. However, a mistake made in the initial classification of MSCs as stem cells has created deeply engrained misconceptions that are still evident today. MSCs are not stem cells, despite a large fraction of research and therapies using the name “mesenchymal stem cells”. This mistake creates false narratives attributing the observed positive outcomes of MSC treatments to stem cell characteristics, which has led to distrust in MSC research. Despite inconsistencies in their classification, MSCs demonstrate consistent positive effects in numerous animal studies and human clinical trials for non-unions and osteoarthritis. With an aging population, regenerative techniques are very promising for novel therapies. To produce trusted and safe new treatments using MSCs, it is essential for the International Society for Cellular Therapies to re-establish common ground in the identity, mechanism of action, and isolation techniques of these cells. 展开更多
关键词 mesenchymal stromal cells OSTEOARTHRITIS Non-Unions
下载PDF
Comparative effectiveness of adipose-derived mesenchymal stromal cells in the management of knee osteoarthritis:A meta-analysis 被引量:3
6
作者 Sathish Muthu Sandesh C Patil +7 位作者 Naveen Jeyaraman Madhan Jeyaraman Prakash Gangadaran Ramya Lakshmi Rajendran Eun Jung Oh Manish Khanna Ho Yun Chung Byeong-Cheol Ahn 《World Journal of Orthopedics》 2023年第1期23-41,共19页
BACKGROUND Osteoarthritis(OA)is the most common joint disorder,is associated with an increasing socioeconomic impact owing to the ageing population.AIM To analyze and compare the efficacy and safety of bone-marrow-der... BACKGROUND Osteoarthritis(OA)is the most common joint disorder,is associated with an increasing socioeconomic impact owing to the ageing population.AIM To analyze and compare the efficacy and safety of bone-marrow-derived mesenchymal stromal cells(BM-MSCs)and adipose tissue-derived MSCs(AD-MSCs)in knee OA management from published randomized controlled trials(RCTs).METHODS Independent and duplicate electronic database searches were performed,including PubMed,EMBASE,Web of Science,and Cochrane Library,until August 2021 for RCTs that analyzed the efficacy and safety of AD-MSCs and BM-MSCs in the management of knee OA.The visual analog scale(VAS)score for pain,Western Ontario McMaster Universities Osteoarthritis Index(WOMAC),Lysholm score,Tegner score,magnetic resonance observation of cartilage repair tissue score,knee osteoarthritis outcome score(KOOS),and adverse events were analyzed.Analysis was performed on the R-platform using OpenMeta(Analyst)software.Twenty-one studies,involving 936 patients,were included.Only one study compared the two MSC sources without patient randomization;hence,the results of all included studies from both sources were pooled,and a comparative critical analysis was performed.RESULTS At six months,both AD-MSCs and BM-MSCs showed significant VAS improvement(P=0.015,P=0.012);this was inconsistent at 1 year for BM-MSCs(P<0.001,P=0.539),and AD-MSCs outperformed BM-MSCs compared to controls in measures such as WOMAC(P<0.001,P=0.541),Lysholm scores(P=0.006;P=0.933),and KOOS(P=0.002;P=0.012).BM-MSC-related procedures caused significant adverse events(P=0.003)compared to AD-MSCs(P=0.673).CONCLUSION Adipose tissue is superior to bone marrow because of its safety and consistent efficacy in improving pain and functional outcomes.Future trials are urgently warranted to validate our findings and reach a consensus on the ideal source of MSCs for managing knee OA. 展开更多
关键词 mesenchymal stromal cell Adipose tissue-derived mesenchymal stromal cell Bone-marrow derived mesenchymal stromal cell Cartilage regeneration Knee osteoarthritis META-ANALYSIS EFFICACY Safety
下载PDF
Use of priming strategies to advance the clinical application of mesenchymal stromal/stem cell-based therapy
7
作者 Vitale Miceli 《World Journal of Stem Cells》 SCIE 2024年第1期7-18,共12页
Mesenchymal stromal/stem cells(MSCs)have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential.MSCs play a pivotal role in maintaining tissue homeostasis an... Mesenchymal stromal/stem cells(MSCs)have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential.MSCs play a pivotal role in maintaining tissue homeostasis and possess diverse functions in tissue repair and recovery in various organs.These cells are charac-terized by easy accessibility,few ethical concerns,and adaptability to in vitro cultures,making them a valuable resource for cell therapy in several clinical conditions.Over the years,it has been shown that the true therapeutic power of MSCs lies not in cell engraftment and replacement but in their ability to produce critical paracrine factors,including cytokines,growth factors,and exosomes(EXOs),which modulate the tissue microenvironment and facilitate repair and regeneration processes.Consequently,MSC-derived products,such as condi-tioned media and EXOs,are now being extensively evaluated for their potential medical applications,offering advantages over the long-term use of whole MSCs.However,the efficacy of MSC-based treatments varies in clinical trials due to both intrinsic differences resulting from the choice of diverse cell sources and non-standardized production methods.To address these concerns and to enhance MSC therapeutic potential,researchers have explored many priming strategies,including exposure to inflammatory molecules,hypoxic conditions,and three-dimensional culture techniques.These approaches have optimized MSC secretion of functional factors,empowering them with enhanced immunomodulatory,angiogenic,and regenerative properties tailored to specific medical conditions.In fact,various priming strategies show promise in the treatment of numerous diseases,from immune-related disorders to acute injuries and cancer.Currently,in order to exploit the full therapeutic potential of MSC therapy,the most important challenge is to optimize the modulation of MSCs to obtain adapted cell therapy for specific clinical disorders.In other words,to unlock the complete potential of MSCs in regenerative medicine,it is crucial to identify the most suitable tissue source and develop in vitro manipulation protocols specific to the type of disease being treated. 展开更多
关键词 mesenchymal stromal/stem cells Therapeutic properties Paracrine effects Cell priming Cell-free therapies Regenerative medicine
下载PDF
Microvesicles derived from mesenchymal stem cells inhibit acute respiratory distress syndrome-related pulmonary fibrosis in mouse partly through hepatocyte growth factor
8
作者 Qi-Hong Chen Ying Zhang +4 位作者 Xue Gu Peng-Lei Yang Jun Yuan Li-Na Yu Jian-Mei Chen 《World Journal of Stem Cells》 SCIE 2024年第8期811-823,共13页
BACKGROUND Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome(ARDS)patients.Mesenchymal stromal cell-derived microvesicles(MSC-MVs)have been shown to ex... BACKGROUND Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome(ARDS)patients.Mesenchymal stromal cell-derived microvesicles(MSC-MVs)have been shown to exert antifibrotic effects in lung diseases.AIM To investigate the effects and mechanisms of MSC-MVs on pulmonary fibrosis in ARDS mouse models.METHODS MSC-MVs with low hepatocyte growth factor(HGF)expression(siHGF-MSC-MVs)were obtained via lentivirus transfection and used to establish the ARDS pulmonary fibrosis mouse model.Following intubation,respiratory mechanics-related indicators were measured via an experimental small animal lung function tester.Homing of MSC-MVs in lung tissues was investigated by near-infrared live imaging.Immunohistochemical,western blotting,ELISA and other methods were used to detect expression of pulmonary fibrosis-related proteins and to compare effects on pulmonary fibrosis and fibrosis-related indicators.RESULTS The MSC-MVs gradually migrated and homed to damaged lung tissues in the ARDS model mice.Treatment with MSC-MVs significantly reduced lung injury and pulmonary fibrosis scores.However,low expression of HGF(siHGF-MSC-MVs)significantly inhibited the effects of MSC-MVs(P<0.05).Compared with the ARDS pulmonary fibrosis group,the MSC-MVs group exhibited suppressed expression of type I collagen antigen,type III collagen antigen,and the proteins transforming growth factor-βandα-smooth muscle actin,whereas the siHGF-MVs group exhibited significantly increased expression of these proteins.In addition,pulmonary compliance and the pressure of oxygen/oxygen inhalation ratio were significantly lower in the MSC-MVs group,and the effects of the MSC-MVs were significantly inhibited by low HGF expression(all P<0.05).CONCLUSION MSC-MVs improved lung ventilation functions and inhibited pulmonary fibrosis in ARDS mice partly via HGF mRNA transfer. 展开更多
关键词 Microvesicles derived from mesenchymal stem cells Acute respiratory distress syndrome Pulmonary fibrosis Hepatocyte growth factor mesenchymal stromal cells
下载PDF
Different priming strategies improve distinct therapeutic capabilities of mesenchymal stromal/stem cells:Potential implications for their clinical use 被引量:1
9
作者 Vitale Miceli Giovanni Zito +4 位作者 Matteo Bulati Alessia Gallo Rosalia Busà Gioacchin Iannolo Pier Giulio Conaldi 《World Journal of Stem Cells》 SCIE 2023年第5期400-420,共21页
Mesenchymal stromal/stem cells(MSCs)have shown significant therapeutic potential,and have therefore been extensively investigated in preclinical studies of regenerative medicine.However,while MSCs have been shown to b... Mesenchymal stromal/stem cells(MSCs)have shown significant therapeutic potential,and have therefore been extensively investigated in preclinical studies of regenerative medicine.However,while MSCs have been shown to be safe as a cellular treatment,they have usually been therapeutically ineffective in human diseases.In fact,in many clinical trials it has been shown that MSCs have moderate or poor efficacy.This inefficacy appears to be ascribable primarily to the heterogeneity of MSCs.Recently,specific priming strategies have been used to improve the therapeutic properties of MSCs.In this review,we explore the literature on the principal priming approaches used to enhance the preclinical inefficacy of MSCs.We found that different priming strategies have been used to direct the therapeutic effects of MSCs toward specific pathological processes.Particularly,while hypoxic priming can be used primarily for the treatment of acute diseases,inflammatory cytokines can be used mainly to prime MSCs in order to treat chronic immune-related disorders.The shift in approach from regeneration to inflammation implies,in MSCs,a shift in the production of functional factors that stimulate regenerative or anti-inflammatory pathways.The opportunity to fine-tune the therapeutic properties of MSCs through different priming strategies could conceivably pave the way for optimizing their therapeutic potential. 展开更多
关键词 mesenchymal stromal/stem cells mesenchymal stromal/stem cell therapeutic properties mesenchymal stromal/stem cell paracrine effects mesenchymal stromal/stem cell priming Pro-inflammatory priming Hypoxic priming 3D culture priming
下载PDF
Stromal cell-derived factor-1α regulates chondrogenic differentiation via activation of the Wnt/β-catenin pathway in mesenchymal stem cells 被引量:1
10
作者 Xiao Chen Xia-Ming Liang +1 位作者 Jia Zheng Yong-Hui Dong 《World Journal of Stem Cells》 SCIE 2023年第5期490-501,共12页
BACKGROUND Mesenchymal stem cells(MSCs)have been applied to treat degenerative articular diseases,and stromal cell-derived factor-1α(SDF-1α)may enhance their therapeutic efficacy.However,the regulatory effects of SD... BACKGROUND Mesenchymal stem cells(MSCs)have been applied to treat degenerative articular diseases,and stromal cell-derived factor-1α(SDF-1α)may enhance their therapeutic efficacy.However,the regulatory effects of SDF-1αon cartilage differentiation remain largely unknown.Identifying the specific regulatory effects of SDF-1αon MSCs will provide a useful target for the treatment of degenerative articular diseases.AIM To explore the role and mechanism of SDF-1αin cartilage differentiation of MSCs and primary chondrocytes.METHODS The expression level of C-X-C chemokine receptor 4(CXCR4)in MSCs was assessed by immunofluorescence.MSCs treated with SDF-1αwere stained for alkaline phosphatase(ALP)and with Alcian blue to observe differentiation.Western blot analysis was used to examine the expression of SRY-box transcription factor 9,aggrecan,collagen II,runt-related transcription factor 2,collagen X,and matrix metalloproteinase(MMP)13 in untreated MSCs,of aggrecan,collagen II,collagen X,and MMP13 in SDF-1α-treated primary chondrocytes,of glycogen synthase kinase 3β(GSK3β)p-GSK3βandβ-catenin expression in SDF-1α-treated MSCs,and of aggrecan,collagen X,and MMP13 in SDF-1α-treated MSCs in the presence or absence of ICG-001(SDF-1αinhibitor).RESULTS Immunofluorescence showed CXCR4 expression in the membranes of MSCs.ALP stain was intensified in MSCs treated with SDF-1αfor 14 d.The SDF-1αtreatment promoted expression of collagen X and MMP13 during cartilage differentiation,whereas it had no effect on the expression of collagen II or aggrecan nor on the formation of cartilage matrix in MSCs.Further,those SDF-1α-mediated effects on MSCs were validated in primary chondrocytes.SDF-1αpromoted the expression of p-GSK3βandβ-catenin in MSCs.And,finally,inhibition of this pathway by ICG-001(5μmol/L)neutralized the SDF-1α-mediated up-regulation of collagen X and MMP13 expression in MSCs.CONCLUSION SDF-1αmay promote hypertrophic cartilage differentiation in MSCs by activating the Wnt/β-catenin pathway.These findings provide further evidence for the use of MSCs and SDF-1αin the treatment of cartilage degeneration and osteoarthritis. 展开更多
关键词 stromal cell-derived factor-1α mesenchymal stem cells Chondrogenic differentiation WNT/Β-CATENIN C-X-C chemokine receptor 4
下载PDF
Banking of perinatal mesenchymal stem/stromal cells for stem cellbased personalized medicine over lifetime:Matters arising
11
作者 Cheng-Hai Li Jing Zhao +1 位作者 Hong-Yan Zhang Bin Wang 《World Journal of Stem Cells》 SCIE 2023年第4期105-119,共15页
Mesenchymal stromal/stem cells(MSCs)are currently applied in regenerative medicine and tissue engineering.Numerous clinical studies have indicated that MSCs from different tissue sources can provide therapeutic benefi... Mesenchymal stromal/stem cells(MSCs)are currently applied in regenerative medicine and tissue engineering.Numerous clinical studies have indicated that MSCs from different tissue sources can provide therapeutic benefits for patients.MSCs derived from either human adult or perinatal tissues have their own unique advantages in their medical practices.Usually,clinical studies are conducted by using of cultured MSCs after thawing or short-term cryopreserved-then-thawed MSCs prior to administration for the treatment of a wide range of diseases and medical disorders.Currently,cryogenically banking perinatal MSCs for potential personalized medicine for later use in lifetime has raised growing interest in China as well as in many other countries.Meanwhile,this has led to questions regarding the availability,stability,consistency,multipotency,and therapeutic efficiency of the potential perinatal MSC-derived therapeutic products after longterm cryostorage.This opinion review does not minimize any therapeutic benefit of perinatal MSCs in many diseases after short-term cryopreservation.This article mainly describes what is known about banking perinatal MSCs in China and,importantly,it is to recognize the limitation and uncertainty of the perinatal MSCs stored in cryobanks for stem cell medical treatments in whole life.This article also provides several recommendations for banking of perinatal MSCs for potentially future personalized medicine,albeit it is impossible to anticipate whether the donor will benefit from banked MSCs during her/his lifetime. 展开更多
关键词 mesenchymal stromal/stem cells Adult mesenchymal stromal/stem cells Perinatal mesenchymal stromal/stem cells Perinatal tissue Stem cell bank Personalized medicine
下载PDF
Commitment of human mesenchymal stromal cells to skeletal lineages is independent of their morphogenetic capacity
12
作者 Jessica Cristina Marín-Llera Damián García-García +3 位作者 Estefania Garay-Pacheco Victor Adrian Cortes-Morales Juan Jose Montesinos-Montesinos Jesus Chimal-Monroy 《World Journal of Stem Cells》 SCIE 2023年第7期701-712,共12页
BACKGROUND Mesenchymal stromal cells(MSCs)are multipotent cell populations obtained from fetal and adult tissues.They share some characteristics with limb bud mesodermal cells such as differentiation potential into os... BACKGROUND Mesenchymal stromal cells(MSCs)are multipotent cell populations obtained from fetal and adult tissues.They share some characteristics with limb bud mesodermal cells such as differentiation potential into osteogenic,chondrogenic,and tenogenic lineages and an embryonic mesodermal origin.Although MSCs differentiate into skeletal-related lineages in vitro,they have not been shown to selforganize into complex skeletal structures or connective tissues,as in the limb.In this work,we demonstrate that the expression of molecular markers to commit MSCs to skeletal lineages is not sufficient to generate skeletal elements in vivo.AIM To evaluate the potential of MSCs to differentiate into skeletal lineages and generate complex skeletal structures using the recombinant limb(RL)system.METHODS We used the experimental system of RLs from dissociated-reaggregated human placenta(PL)and umbilical cord blood(UCB)MSCs.After being harvested and reaggregated in a pellet,cultured cells were introduced into an ectodermal cover obtained from an early chicken limb bud.Next,this filled ectoderm was grafted into the back of a donor chick embryo.Under these conditions,the cells received and responded to the ectoderm’s embryonic signals in a spatiotemporal manner to differentiate and pattern into skeletal elements.Their response to differentiation and morphogenetic signals was evaluated by quantitative poly-merase chain reaction,histology,immunofluorescence,scanning electron microscopy,and in situ hybridization.RESULTS We found that human PL-MSCs and UCB-MSCs constituting the RLs expressed chondrogenic,osteogenic,and tenogenic molecular markers while differentially committing into limb lineages but could not generate complex structures in vivo.MSCs-RL from PL or UCB were committed early to chondrogenic lineage.Nevertheless,the UCB-RL osteogenic commitment was favored,although preferentially to a tenogenic cell fate.These findings suggest that the commitment of MSCs to differentiate into skeletal lineages differs according to the source and is independent of their capacity to generate skeletal elements or connective tissue in vivo.Our results suggest that the failure to form skeletal structures may be due to the intrinsic characteristics of MSCs.Thus,it is necessary to thoroughly evaluate the biological aspects of MSCs and how they respond to morphogenetic signals in an in vivo context.CONCLUSION PL-MSCs and UCB-MSCs express molecular markers of differentiation into skeletal lineages,but they are not sufficient to generate complex skeletal structures in vivo. 展开更多
关键词 Human mesenchymal stromal cells Recombinant limbs mesenchymal stromal cell morphogene-sis mesenchymal stromal cell in vivo differentiation Skeletal tissues
下载PDF
Senescent mesenchymal stem/stromal cells in pre-metastatic bone marrow of untreated advanced breast cancer patients
13
作者 FRANCISCO RAÚL BORZONE MARÍA BELÉN GIORELLO +6 位作者 LEANDRO MARCELO MARTINEZ MARÍA CECILIA SANMARTIN LEONARDO FELDMAN FEDERICO DIMASE EMILIO BATAGELJ GUSTAVO YANNARELLI NORMA ALEJANDRA CHASSEING 《Oncology Research》 SCIE 2023年第3期361-374,共14页
Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cel... Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cells(MSCs)are critical for BM/bone homeostasis,and failures in their functionality,transform the BM into a premetastatic niche(PMN).We previously found that BM-MSCs from advanced breast cancer patients(BCPs,infiltrative ductal carcinoma,stage III-B)have an abnormal profile.This work aims to study some of the metabolic and molecular mechanisms underlying MSCs shift from a normal to an abnormal profile in this group of patients.A comparative analysis was undertaken,which included self-renewal capacity,morphology,proliferation capacity,cell cycle,reactive oxygen species(ROS)levels,and senescence-associatedβ‑galactosidase(SA‑β‑gal)staining of BMderived MSCs isolated from 14 BCPs and 9 healthy volunteers(HVs).Additionally,the expression and activity of the telomerase subunit TERT,as well as telomere length,were measured.Expression levels of pluripotency,osteogenic,and osteoclastogenic genes(OCT-4,SOX-2,M-CAM,RUNX-2,BMP-2,CCL-2,M-CSF,and IL-6)were also determined.The results showed that MSCs from BCPs had reduced,self-renewal and proliferation capacity.These cells also exhibited inhibited cell cycle progression and phenotypic changes,such as an enlarged and flattened appearance.Additionally,there was an increase in ROS and senescence levels and a decrease in the functional capacity of TERT to preserve telomere length.We also found an increase in pro-inflammatory/pro-osteoclastogenic gene expression and a decrease in pluripotency gene expression.We conclude that these changes could be responsible for the abnormal functional profile that MSCs show in this group of patients. 展开更多
关键词 mesenchymal stem/stromal cells Senescence Breast cancer Bone marrow Pre-metastatic niche Bone metastasis
下载PDF
Harnessing and honing mesenchymal stem/stromal cells for the amelioration of graft-versus-host disease
14
作者 Tang-Her Jaing Tsung-Yen Chang Chia-Chi Chiu 《World Journal of Stem Cells》 SCIE 2023年第4期221-234,共14页
Allogeneic hematopoietic stem cell transplantation is a deterministic curative procedure for various hematologic disorders and congenital immunodeficiency.Despite its increased use,the mortality rate for patients unde... Allogeneic hematopoietic stem cell transplantation is a deterministic curative procedure for various hematologic disorders and congenital immunodeficiency.Despite its increased use,the mortality rate for patients undergoing this procedure remains high,mainly due to the perceived risk of exacerbating graft-versushost disease(GVHD).However,even with immunosuppressive agents,some patients still develop GVHD.Advanced mesenchymal stem/stromal cell(MSC)strategies have been proposed to achieve better therapeutic outcomes,given their immunosuppressive potential.However,the efficacy and trial designs have varied among the studies,and some research findings appear contradictory due to the challenges in characterizing the in vivo effects of MSCs.This review aims to provide real insights into this clinical entity,emphasizing diagnostic,and therapeutic considerations and generating pathophysiology hypotheses to identify research avenues.The indications and timing for the clinical application of MSCs are still subject to debate. 展开更多
关键词 mesenchymal stem/stromal cells Graft-versus-host disease IMMUNOMODULATORY Adaptive immunity EXOSOMES
下载PDF
Constitutive aryl hydrocarbon receptor facilitates the regenerative potential of mouse bone marrow mesenchymal stromal cells
15
作者 Jing Huang Yi-Ning Wang Yi Zhou 《World Journal of Stem Cells》 SCIE 2023年第8期807-820,共14页
BACKGROUND Bone marrow mesenchymal stromal cells(BMSCs)are the commonly used seed cells in tissue engineering.Aryl hydrocarbon receptor(AhR)is a transcription factor involved in various cellular processes.However,the ... BACKGROUND Bone marrow mesenchymal stromal cells(BMSCs)are the commonly used seed cells in tissue engineering.Aryl hydrocarbon receptor(AhR)is a transcription factor involved in various cellular processes.However,the function of constitutive AhR in BMSCs remains unclear.AIM To investigate the role of AhR in the osteogenic and macrophage-modulating potential of mouse BMSCs(mBMSCs)and the underlying mechanism.METHODS Immunochemistry and immunofluorescent staining were used to observe the expression of AhR in mouse bone marrow tissue and mBMSCs.The overexpression or knockdown of AhR was achieved by lentivirus-mediated plasmid.The osteogenic potential was observed by alkaline phosphatase and alizarin red staining.The mRNA and protein levels of osteogenic markers were detected by quantitative polymerase chain reaction(qPCR)and western blot.After coculture with different mBMSCs,the cluster of differentiation(CD)86 and CD206 expressions levels in RAW 264.7 cells were analyzed by flow cytometry.To explore the underlying molecular mechanism,the interaction of AhR with signal transducer and activator of transcription 3(STAT3)was observed by co-immunoprecipitation and phosphorylation of STAT3 was detected by western blot.RESULTS AhR expressions in mouse bone marrow tissue and isolated mBMSCs were detected.AhR overexpression enhanced the osteogenic potential of mBMSCs while AhR knockdown suppressed it.The ratio of CD86+RAW 264.7 cells cocultured with AhR-overexpressed mBMSCs was reduced and that of CD206+cells was increased.AhR directly interacted with STAT3.AhR overexpression increased the phosphorylation of STAT3.After inhibition of STAT3 via stattic,the promotive effects of AhR overexpression on the osteogenic differentiation and macrophage-modulating were partially counteracted.CONCLUSION AhR plays a beneficial role in the regenerative potential of mBMSCs partially by increasing phosphorylation of STAT3. 展开更多
关键词 Aryl hydrocarbon receptor Bone marrow mesenchymal stromal cells OSTEOGENESIS MACROPHAGE Signal transducer and activator of transcription 3 Interaction
下载PDF
Is mandible derived mesenchymal stromal cells superior in proliferation and regeneration to long bone-derived mesenchymal stromal cells?
16
作者 Madhan Jeyaraman Tushar Verma +3 位作者 Naveen Jeyaraman Bishnu Prasad Patro Arulkumar Nallakumarasamy Manish Khanna 《World Journal of Methodology》 2023年第2期10-17,共8页
Mesenchymal stromal cells(MSCs)are cells with the characteristic ability of self-renewal along with the ability to exhibit multilineage differentiation.Bone marrow(BM)is the first tissue in which MSCs were identified ... Mesenchymal stromal cells(MSCs)are cells with the characteristic ability of self-renewal along with the ability to exhibit multilineage differentiation.Bone marrow(BM)is the first tissue in which MSCs were identified and BM-MSCs are most commonly used among various MSCs in clinical settings.MSCs can stimulate and promote osseous regeneration.Due to the difference in the development of long bones and craniofacial bones,the mandibular-derived MSCs(M-MSCs)have distinct differentiation characteristics as compared to that of long bones.Both mandibular and long bone-derived MSCs are positive for MSC-associated markers such as CD-73,-105,and-106,stage-specific embryonic antigen 4 and Octamer-4,and negative for hematopoietic markers such as CD-14. 展开更多
关键词 MANDIBLE Long bone mesenchymal stromal cells Osteogenic potential REGENERATION
下载PDF
Anti-fibrotic and anti-inflammatory effect of mesenchymal stromal cell-derived extracellular vesicles in chronic kidney disease 被引量:1
17
作者 GIULIA CHIABOTTO STEFANIA BRUNO 《BIOCELL》 SCIE 2023年第7期1499-1508,共10页
Renal fibrosis and inflammation are common pathological features of chronic kidney disease(CKD).Since currently available treatments can only delay the progression of CKD,the outcome of patients with CKD is still poor... Renal fibrosis and inflammation are common pathological features of chronic kidney disease(CKD).Since currently available treatments can only delay the progression of CKD,the outcome of patients with CKD is still poor.One therapeutic option for the prevention of CKD-related complications could be the use of mesenchymal stromal cells(MSCs),which have shown beneficial effects in tissue fibrosis and regeneration after damage.However,safety issues,such as cellular rejection and carcinogenicity,limit their clinical application.Among the bioactive factors secreted by MSCs,extracellular vesicles(EVs)have shown the same beneficial effect of MSCs,without any notable side effects.This heterogeneous population of membranous nano-sized particles can deliver genetic material and functional proteins to injured cells,prompting tissue regeneration.Here we describe the anti-fibrotic and antiinflammatory properties of MSC-derived EVs in CKD preclinical models and summarize the potential molecular mechanisms involved in the regulation of renal fibrosis and inflammation. 展开更多
关键词 Chronic kidney disease Renal fibrosis Epithelial-to-mesenchymal transition mesenchymal stromal cell Extracellular vesicles
下载PDF
Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? 被引量:40
18
作者 Ann De Becker Ivan Van Riet 《World Journal of Stem Cells》 SCIE CAS 2016年第3期73-87,共15页
Mesenchymal stromal cells(MSCs) are currently being investigated for use in a wide variety of clinical applications. For most of these applications, systemic delivery of the cells is preferred. However, this requires ... Mesenchymal stromal cells(MSCs) are currently being investigated for use in a wide variety of clinical applications. For most of these applications, systemic delivery of the cells is preferred. However, this requires the homing and migration of MSCs to a target tissue. Although MSC hominghas been described, this process does not appear to be highly efficacious because only a few cells reach the target tissue and remain there after systemic administration. This has been ascribed to low expression levels of homing molecules, the loss of expression of such molecules during expansion, and the heterogeneity of MSCs in cultures and MSC culture protocols. To overcome these limitations, different methods to improve the homing capacity of MSCs have been examined. Here, we review the current understanding of MSC homing, with a particular focus on homing to bone marrow. In addition, we summarize the strategies that have been developed to improve this process. A better understanding of MSC biology, MSC migration and homing mechanisms will allow us to prepare MSCs with optimal homing capacities. The efficacy of therapeutic applications is dependent on efficient delivery of the cells and can, therefore, only benefit from better insights into the homing mechanisms. 展开更多
关键词 mesenchymal stromal cells HOMING Bone MARROW HOMING RECEPTORS EXTRAVASATION
下载PDF
Adipose-derived mesenchymal stromal/stem cells: An update on their phenotype in vivo and in vitro 被引量:17
19
作者 Patrick C Baer 《World Journal of Stem Cells》 SCIE CAS 2014年第3期256-265,共10页
Adipose tissue is a rich, ubiquitous and easily acces-sible source for multipotent stromal/stem cells and has, therefore, several advantages compared to other sourc-es of mesenchymal stromal/stem cells. Several studie... Adipose tissue is a rich, ubiquitous and easily acces-sible source for multipotent stromal/stem cells and has, therefore, several advantages compared to other sourc-es of mesenchymal stromal/stem cells. Several studies have tried to identify the origin of the stromal/stem cell population within adipose tissue in situ. This is a complicated attempt because no marker has currently been described which unambiguously identifies native adipose-derived stromal/stem cells(ASCs). Isolated and cultured ASCs are a non-uniform preparation consisting of several subsets of stem and precursor cells. Cultured ASCs are characterized by their expression of a panel of markers(and the absence of others), whereas their in vitro phenotype is dynamic. Some markers were ex-pressed de novo during culture, the expression of some markers is lost. For a long time, CD34 expression was solely used to characterize haematopoietic stem and progenitor cells, but now it has become evident that it is also a potential marker to identify an ASC subpopula-tion in situ and after a short culture time. Nevertheless, long-term cultured ASCs do not express CD34, perhaps due to the artificial environment. This review gives an update of the recently published data on the origin and phenotype of ASCs both in vivo and in vitro. In addition, the composition of ASCs(or their subpopula-tions) seems to vary between different laboratories andpreparations. This heterogeneity of ASC preparationsmay result from different reasons. One of the main problems in comparing results from different laborato-ries is the lack of a standardized isolation and culture protocol for ASCs. Since many aspects of ASCs, suchas the differential potential or the current use in clinical trials, are fully described in other recent reviews, this review further updates the more basic research issues concerning ASCs' subpopulations, heterogeneity andculture standardization. 展开更多
关键词 Adipose-derived stromal/stem cells Adi-pose tissue Subpopulation Heterogeneity PHENOTYPE CD34 mesenchymal STEM cells
下载PDF
Mesenchymal stromal cells from human perinatal tissues: From biology to cell therapy 被引量:16
20
作者 Karen Bieback Irena Brinkmann 《World Journal of Stem Cells》 SCIE CAS 2010年第4期81-92,共12页
Cell-based regenerative medicine is of growing interest in biomedical research. The role of stem cells in this context is under intense scrutiny and may help to define principles of organ regeneration and develop inno... Cell-based regenerative medicine is of growing interest in biomedical research. The role of stem cells in this context is under intense scrutiny and may help to define principles of organ regeneration and develop innovative therapeutics for organ failure. Utilizing stem and progenitor cells for organ replacement has been conducted for many years when performing hematopoietic stem cell transplantation. Since the first successful transplantation of umbilical cord blood to treat hematological malignancies, non-hematopoietic stem and progenitor cell populations have recently been identified within umbilical cord blood and other perinatal and fetal tissues. A cell population entitled mesenchymal stromal cells (MSCs) emerged as one of the most intensely studied as it subsumes a variety of capacities: MSCs can differentiate into various subtypes of the mesodermal lineage, they secrete a large array of trophic factors suitable of recruiting endogenous repair processes and they are immunomodulatory.Focusing on perinatal tissues to isolate MSCs, we will discuss some of the challenges associated with these cell types concentrating on concepts of isolation and expansion, the comparison with cells derived from other tissue sources, regarding phenotype and differentiation capacity and finally their therapeutic potential. 展开更多
关键词 mesenchymal stromal cells Umbilical CORD CORD blood Regenerative medicine Cell therapy Stem cells AMNION CHORION PERINATAL Discarded tissue Fetal membranes
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部