期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A computation design method for architectural artifacts adapted from traditional Kagome bamboo basketry techniques
1
作者 Hiroyuki Shinohara Tung Hoi Peter Chan 《Frontiers of Architectural Research》 CSCD 2024年第2期249-264,共16页
This study is a digital form-finding and manual fabrication experiment in woven architectural design,with one traditional weaving style,Kagome,used to scale the craft up into an architectural-scale bamboo woven artifa... This study is a digital form-finding and manual fabrication experiment in woven architectural design,with one traditional weaving style,Kagome,used to scale the craft up into an architectural-scale bamboo woven artifact.Kagome is a trihexagonal pattern employed in traditional bamboo basketry as a triaxial weaving system,resulting in an object with a self-bracing capacity without the use of fasteners owing to its interlacing lattices.Although existing studies and tools have addressed triaxial weaving design and representation,the current consideration of the advantages of weaving with bamboo is insufficient.To address this research gap,this study develops a computational design method based on studies on bamboo basketry.This allows for the representation and exploration of design geometries using combinations of regular triangular meshes for the fabrication of Kagome woven bamboo artifacts.A full-scale mock-up was fabricated to evaluate the effectiveness of the method.The mock-up demonstrated the self-bracing properties of Kagome,but there were discrepancies between the mock-up and the design.Factors affecting bamboo weaving on an architectural scale have been identified within this study to inform future research on woven bamboo structures. 展开更多
关键词 Traditionalbamboo craft Triaxialmaterial interlacing BAMBOO Computational design methods mesh block combinationsystem Architecturalwoven artifact
原文传递
Entropy Generation Analysis around Airfoil using Multi-Block Lattice Boltzmann Method
2
作者 Wei Wang Jun Wang +1 位作者 Zhiang Li Zhiliang Lin 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第3期777-798,共22页
This present paper proposes aerodynamic forces and entropy generation characteristics on theflow past two-dimensional airfoil at low Reynolds number by multiple-relaxation-time lattice Boltzmann method to clarify theflo... This present paper proposes aerodynamic forces and entropy generation characteristics on theflow past two-dimensional airfoil at low Reynolds number by multiple-relaxation-time lattice Boltzmann method to clarify theflow loss mechanism.The block mesh refinement was adopted in which a higher accuracy was needed in parts of the domain characterized by complexflow.The interpolated bounce-back method was used to treat the irregular curve.This numerical method can effectively solve the complexflowfield simulation problems with reasonable accuracy and reli-ability by simulatingflow around plate and airfoil.Based on second law of thermo-dynamics,an expression of entropy generation rate for arbitrary control volume was derived theoretically which could accurately quantify the local irreversible loss of theflowfield at any position.After that,a comprehensive numerical study was conducted to analyze relationship of entropy generation and drag force by taking NACA0012 air-foil as the research object.For unsteady condition,entropy generation rate and the drag force are not linearly related any more.Losses due to steady effects mainly con-sider the irreversibility in the boundary layer and wake while the unsteady effects come from the interaction between the main separation vortex and the trailing shed-ding vortex. 展开更多
关键词 Loss mechanism entropy generation flow past airfoil lattice Boltzmann method multiple-relaxation-time block mesh refinement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部