High-order schemes based on block-structured adaptive mesh refinement method are prepared to solve computational aeroacoustic (CAA) problems with an aim at improving computational efficiency. A number of numerical i...High-order schemes based on block-structured adaptive mesh refinement method are prepared to solve computational aeroacoustic (CAA) problems with an aim at improving computational efficiency. A number of numerical issues associated with high-order schemes on an adaptively refined mesh, such as stability and accuracy are addressed. Several CAA benchmark problems are used to demonstrate the feasibility and efficiency of the approach.展开更多
This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established with...This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established without any regularity assumption on the mesh.展开更多
In this paper, we discuss the uniform convergence of the simple upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh for solving a singularly perturbed Robin boundary value problem, and investigate the m...In this paper, we discuss the uniform convergence of the simple upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh for solving a singularly perturbed Robin boundary value problem, and investigate the midpoint upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh to achieve better uniform convergence. The elaborate ε-uniform pointwise estimates are proved by using the comparison principle and barrier functions. The numerical experiments support the theoretical results for the schemes on the meshes.展开更多
In this paper, the accuracy of Chang's unstructured space-time conservation element and solution element (CE/SE) scheme is analysed for the first time. Based on a redefinition of conservation elements and solution ...In this paper, the accuracy of Chang's unstructured space-time conservation element and solution element (CE/SE) scheme is analysed for the first time. Based on a redefinition of conservation elements and solution elements, an improved two-dimensional (2D) unstructured CE/SE scheme with an adjustable parameter β is proposed to accurately capture shock waves. The new scheme can be applied to any type of grid without special treatnmnt. Compared with Chang's original parameter a, larger/5 dose not cost extra computational resources. Numerical tests reveal that the new scheme is not only clear in physical concept, compact and highly accurate but also more capable of capturing shock waves than the popular fifth-order accurate weighted essentially non-oscillatory scheme.展开更多
In this paper, we consider the upwind difference scheme for singular perturbation problem (1.1). On a special discretization mesh, it is proved that the solution of the upwind difference scheme is first order converge...In this paper, we consider the upwind difference scheme for singular perturbation problem (1.1). On a special discretization mesh, it is proved that the solution of the upwind difference scheme is first order convergent, uniformly in the small parameter e , to the solution of problem (1.1). Numerical results are finally provided.展开更多
In this paper, using nonuniform mesh and exponentially fitted difference method, a uniformly convergent difference scheme for an initial-boundary value problem of linear parabolic differential equation with the nonsmo...In this paper, using nonuniform mesh and exponentially fitted difference method, a uniformly convergent difference scheme for an initial-boundary value problem of linear parabolic differential equation with the nonsmooth boundary layer function with respect to small parameter e is given, and error estimate and numerical result are also given.展开更多
基金supported by the National Natural Science Foundation of China (11150110134)the Science Foundation of Aeronautics of China (20101271004)
文摘High-order schemes based on block-structured adaptive mesh refinement method are prepared to solve computational aeroacoustic (CAA) problems with an aim at improving computational efficiency. A number of numerical issues associated with high-order schemes on an adaptively refined mesh, such as stability and accuracy are addressed. Several CAA benchmark problems are used to demonstrate the feasibility and efficiency of the approach.
文摘This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established without any regularity assumption on the mesh.
文摘In this paper, we discuss the uniform convergence of the simple upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh for solving a singularly perturbed Robin boundary value problem, and investigate the midpoint upwind scheme on the Shishkin mesh and the Bakhvalov-Shishkin mesh to achieve better uniform convergence. The elaborate ε-uniform pointwise estimates are proved by using the comparison principle and barrier functions. The numerical experiments support the theoretical results for the schemes on the meshes.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10732010 and 10972010)
文摘In this paper, the accuracy of Chang's unstructured space-time conservation element and solution element (CE/SE) scheme is analysed for the first time. Based on a redefinition of conservation elements and solution elements, an improved two-dimensional (2D) unstructured CE/SE scheme with an adjustable parameter β is proposed to accurately capture shock waves. The new scheme can be applied to any type of grid without special treatnmnt. Compared with Chang's original parameter a, larger/5 dose not cost extra computational resources. Numerical tests reveal that the new scheme is not only clear in physical concept, compact and highly accurate but also more capable of capturing shock waves than the popular fifth-order accurate weighted essentially non-oscillatory scheme.
文摘In this paper, we consider the upwind difference scheme for singular perturbation problem (1.1). On a special discretization mesh, it is proved that the solution of the upwind difference scheme is first order convergent, uniformly in the small parameter e , to the solution of problem (1.1). Numerical results are finally provided.
文摘In this paper, using nonuniform mesh and exponentially fitted difference method, a uniformly convergent difference scheme for an initial-boundary value problem of linear parabolic differential equation with the nonsmooth boundary layer function with respect to small parameter e is given, and error estimate and numerical result are also given.