<div style="text-align:justify;"> In order to speed up the global optimization-based mesh smoothing, an enhanced steepest descent method is presented in the paper. Numerical experiment results show tha...<div style="text-align:justify;"> In order to speed up the global optimization-based mesh smoothing, an enhanced steepest descent method is presented in the paper. Numerical experiment results show that the method performs better than the steepest descent method in the global smoothing. We also presented a physically-based interpretation to explain why the method works better than the steepest descent method. </div>展开更多
As the mesh models usually contain noise data,it is necessary to eliminate the noises and smooth the mesh.But existed methods always lose geometric features during the smoothing process.Hence,the noise is considered a...As the mesh models usually contain noise data,it is necessary to eliminate the noises and smooth the mesh.But existed methods always lose geometric features during the smoothing process.Hence,the noise is considered as a kind of random signal with high frequency,and then the mesh model smoothing is operated with signal processing theory.Local wave analysis is used to deal with geometric signal,and then a novel mesh smoothing method based on the local wave is proposed.The proposed method includes following steps:Firstly,analyze the principle of local wave decomposition for 1D signal,and expand it to 2D signal and 3D spherical surface signal processing;Secondly,map the mesh to the spherical surface with parameterization,resample the spherical mesh and decompose the spherical signals by local wave analysis;Thirdly,propose the coordinate smoothing and radical radius smoothing methods,the former filters the mesh points' coordinates by local wave,and the latter filters the radical radius from their geometric center to mesh points by local wave;Finally,remove the high-frequency component of spherical signal,and obtain the smooth mesh model with inversely mapping from the spherical signal.Several mesh models with Gaussian noise are processed by local wave based method and other compared methods.The results show that local wave based method can obtain better smoothing performance,and reserve more original geometric features at the same time.展开更多
This paper proposes a vertex-estimation-based, feature-preserving smoothingtechnique for meshes. A robust mesh smoothing operator called mean value coordinates flow isintroduced to modify mean curvature flow and make ...This paper proposes a vertex-estimation-based, feature-preserving smoothingtechnique for meshes. A robust mesh smoothing operator called mean value coordinates flow isintroduced to modify mean curvature flow and make it more stable. Also the paper proposes athree-pass vertex estimation based on bilateral filtering of local neighbors which is transferredfrom image processing settings and a Quasi-Laplacian operation, derived from the standard Laplacianoperator, is performed to increase the smoothness order of the mesh rapidly whilst denoising meshesefficiently, preventing volume shrinkage as well as preserving sharp features of the mesh. Comparedwith previous algorithms, the result shows it is simple, efficient and robust.展开更多
Mesh smoothing is an essential technique for the improvement of mesh quality in finite element analysis,due to the fact that mesh quality has a large impact on the convergence of the computational scheme and the accur...Mesh smoothing is an essential technique for the improvement of mesh quality in finite element analysis,due to the fact that mesh quality has a large impact on the convergence of the computational scheme and the accuracy of the numerical results.A novel mesh smoothing method based on regular-position-guided operations is presented in this paper.The method introduced here contains two main stages:The first stage computes the regular position of each vertex based on the shape of the element and conducts regular-position-oriented-based element transformations independently;the second stage determines the finial position of each vertex according to its surrounding elements with an assembly strategy.This method is not limited to planar triangular mesh,but applicable to surface polygonal mesh.Numerical experiments on various mesh models demonstrate the effectiveness and potential of this method.展开更多
The concept of optimal Delaunay triangulation (ODT) and the corresponding error-based quality metric are first introduced. Then one kind of mesh smoothing algorithm for tetrahedral mesh based on the concept of ODT is ...The concept of optimal Delaunay triangulation (ODT) and the corresponding error-based quality metric are first introduced. Then one kind of mesh smoothing algorithm for tetrahedral mesh based on the concept of ODT is examined. With regard to its problem of possible producing illegal elements, this paper proposes a modified smoothing scheme with a constrained optimization model for tetrahedral mesh quality improvement. The constrained optimization model is converted to an unconstrained one and then solved by integrating chaos search and BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm efficiently. Quality improvement for tetrahedral mesh is finally achieved by alternately applying the presented smoothing scheme and re-triangulation. Some testing examples are given to demonstrate the effectiveness of the proposed approach.展开更多
With the development of advanced imaging technology, digital images are widely used. This paper proposes an automatic quadrilateral mesh generation algorithm for multi-colour imaged structures. It takes an original ar...With the development of advanced imaging technology, digital images are widely used. This paper proposes an automatic quadrilateral mesh generation algorithm for multi-colour imaged structures. It takes an original arbitrary digital image as an input for automatic quadrilateral mesh generation, this includes removing the noise, extracting and smoothing the boundary geometries between different colours, and automatic all-quad mesh generation with the above boundaries as constraints. An application example is provided to demonstrate the usefulness and effectiveness of the proposed approach.展开更多
A new method as a post-processing step is presented to improve the shape quality of triangular meshes, which uses a topological clean up procedure and discrete smoothing interpolate (DSI) algorithm together. T...A new method as a post-processing step is presented to improve the shape quality of triangular meshes, which uses a topological clean up procedure and discrete smoothing interpolate (DSI) algorithm together. This method can improve the angle distribution of mesh element. while keeping the resulting meshes conform to the predefined constraints which are inputted as a PSLG.展开更多
文摘<div style="text-align:justify;"> In order to speed up the global optimization-based mesh smoothing, an enhanced steepest descent method is presented in the paper. Numerical experiment results show that the method performs better than the steepest descent method in the global smoothing. We also presented a physically-based interpretation to explain why the method works better than the steepest descent method. </div>
基金supported by National Natural Science Foundation of China (Grant No. 61075118,Grant No. 61005056,Grant No. 60975016)National Key Technology Support Program of China (Grant No. 2007BAH11B02)+1 种基金Zhejiang Provincial Natural Science Foundation of China (Grant No. Y1100880)Open Project Program of State Key Laboratory of CAD&CG of China (Grant No. A0906)
文摘As the mesh models usually contain noise data,it is necessary to eliminate the noises and smooth the mesh.But existed methods always lose geometric features during the smoothing process.Hence,the noise is considered as a kind of random signal with high frequency,and then the mesh model smoothing is operated with signal processing theory.Local wave analysis is used to deal with geometric signal,and then a novel mesh smoothing method based on the local wave is proposed.The proposed method includes following steps:Firstly,analyze the principle of local wave decomposition for 1D signal,and expand it to 2D signal and 3D spherical surface signal processing;Secondly,map the mesh to the spherical surface with parameterization,resample the spherical mesh and decompose the spherical signals by local wave analysis;Thirdly,propose the coordinate smoothing and radical radius smoothing methods,the former filters the mesh points' coordinates by local wave,and the latter filters the radical radius from their geometric center to mesh points by local wave;Finally,remove the high-frequency component of spherical signal,and obtain the smooth mesh model with inversely mapping from the spherical signal.Several mesh models with Gaussian noise are processed by local wave based method and other compared methods.The results show that local wave based method can obtain better smoothing performance,and reserve more original geometric features at the same time.
文摘This paper proposes a vertex-estimation-based, feature-preserving smoothingtechnique for meshes. A robust mesh smoothing operator called mean value coordinates flow isintroduced to modify mean curvature flow and make it more stable. Also the paper proposes athree-pass vertex estimation based on bilateral filtering of local neighbors which is transferredfrom image processing settings and a Quasi-Laplacian operation, derived from the standard Laplacianoperator, is performed to increase the smoothness order of the mesh rapidly whilst denoising meshesefficiently, preventing volume shrinkage as well as preserving sharp features of the mesh. Comparedwith previous algorithms, the result shows it is simple, efficient and robust.
文摘Mesh smoothing is an essential technique for the improvement of mesh quality in finite element analysis,due to the fact that mesh quality has a large impact on the convergence of the computational scheme and the accuracy of the numerical results.A novel mesh smoothing method based on regular-position-guided operations is presented in this paper.The method introduced here contains two main stages:The first stage computes the regular position of each vertex based on the shape of the element and conducts regular-position-oriented-based element transformations independently;the second stage determines the finial position of each vertex according to its surrounding elements with an assembly strategy.This method is not limited to planar triangular mesh,but applicable to surface polygonal mesh.Numerical experiments on various mesh models demonstrate the effectiveness and potential of this method.
文摘The concept of optimal Delaunay triangulation (ODT) and the corresponding error-based quality metric are first introduced. Then one kind of mesh smoothing algorithm for tetrahedral mesh based on the concept of ODT is examined. With regard to its problem of possible producing illegal elements, this paper proposes a modified smoothing scheme with a constrained optimization model for tetrahedral mesh quality improvement. The constrained optimization model is converted to an unconstrained one and then solved by integrating chaos search and BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm efficiently. Quality improvement for tetrahedral mesh is finally achieved by alternately applying the presented smoothing scheme and re-triangulation. Some testing examples are given to demonstrate the effectiveness of the proposed approach.
基金supported by the Australian Research Council (ARC DP066620, LP0560932, and LX0989423)
文摘With the development of advanced imaging technology, digital images are widely used. This paper proposes an automatic quadrilateral mesh generation algorithm for multi-colour imaged structures. It takes an original arbitrary digital image as an input for automatic quadrilateral mesh generation, this includes removing the noise, extracting and smoothing the boundary geometries between different colours, and automatic all-quad mesh generation with the above boundaries as constraints. An application example is provided to demonstrate the usefulness and effectiveness of the proposed approach.
文摘A new method as a post-processing step is presented to improve the shape quality of triangular meshes, which uses a topological clean up procedure and discrete smoothing interpolate (DSI) algorithm together. This method can improve the angle distribution of mesh element. while keeping the resulting meshes conform to the predefined constraints which are inputted as a PSLG.