The main aim of this paper is to study the approximation to viscoelasticity type equations with a Crouzeix-Raviart type nonconforming finite element on the anisotropic meshes. The superclose property of the exact solu...The main aim of this paper is to study the approximation to viscoelasticity type equations with a Crouzeix-Raviart type nonconforming finite element on the anisotropic meshes. The superclose property of the exact solution and the optimal error estimate of its derivative with respect to time are derived by using some novel techniques. Moreover, employing a postprocessing technique, the global superconvergence property for the discretization error of the postprocessed discrete solution to the solution itself is studied.展开更多
本文讨论了二维时间分数阶Caputo-Hadamard慢扩散方程的交替方向隐式(Alternating Direction Implicit,ADI)紧致差分格式。首先,在指数型网格上对Caputo-Hadamard型分数阶导数进行离散;其次,利用紧致ADI方法将高维问题转化为2个一维问题...本文讨论了二维时间分数阶Caputo-Hadamard慢扩散方程的交替方向隐式(Alternating Direction Implicit,ADI)紧致差分格式。首先,在指数型网格上对Caputo-Hadamard型分数阶导数进行离散;其次,利用紧致ADI方法将高维问题转化为2个一维问题;根据离散系数的性质,利用数学归纳法证明了差分格式的稳定性和收敛性;最后,对具体模型进行数值求解。算例验证了上述理论分析的有效性。展开更多
基金This research is supported by the NSF of China (10371113 10471133),SF of Henan ProvinceSF of Education Committee of Henan Province (2006110011)
文摘The main aim of this paper is to study the approximation to viscoelasticity type equations with a Crouzeix-Raviart type nonconforming finite element on the anisotropic meshes. The superclose property of the exact solution and the optimal error estimate of its derivative with respect to time are derived by using some novel techniques. Moreover, employing a postprocessing technique, the global superconvergence property for the discretization error of the postprocessed discrete solution to the solution itself is studied.
文摘本文讨论了二维时间分数阶Caputo-Hadamard慢扩散方程的交替方向隐式(Alternating Direction Implicit,ADI)紧致差分格式。首先,在指数型网格上对Caputo-Hadamard型分数阶导数进行离散;其次,利用紧致ADI方法将高维问题转化为2个一维问题;根据离散系数的性质,利用数学归纳法证明了差分格式的稳定性和收敛性;最后,对具体模型进行数值求解。算例验证了上述理论分析的有效性。