To improve the treatment efficiency of essential boundary condition in mesh-less methods, a simple and robust method is proposed in this paper. Rising weight of nodes in the construction of trail function, specified f...To improve the treatment efficiency of essential boundary condition in mesh-less methods, a simple and robust method is proposed in this paper. Rising weight of nodes in the construction of trail function, specified for essential boundary condition, can make the trail function pass through these nodes. And then, the trail function can satisfy the essential boundary condition previously by setting diagonal element to 1 or multiplying diagonal element by a big number in FEM. The MLS method is adopted to validate this method, and it is proved that this method is eostless and robust in most of mesh-less methods.展开更多
The interpolating moving least-squares (IMLS) method is discussed first in this paper. And the formulae of the IMLS method obtained by Lancaster are revised. Then on the basis of the boundary element-free method (B...The interpolating moving least-squares (IMLS) method is discussed first in this paper. And the formulae of the IMLS method obtained by Lancaster are revised. Then on the basis of the boundary element-free method (BEFM), combining the boundary integral equation (BIE) method with the IMLS method, the improved boundary element-free method (IBEFM) for two-dimensional potential problems is presented, and the corresponding formulae of the IBEFM are obtained. In the BEFM, boundary conditions are applied directly, but the shape function in the MLS does not satisfy the property of the Kronecker ~ function. This is a problem of the BEFM, and must be solved theoretically. In the IMLS method, when the shape function satisfies the property of the Kronecker 5 function, then the boundary conditions, in the meshless method based on the IMLS method, can be applied directly. Then the IBEFM, based on the IMLS method, is a direct meshless boundary integral equation method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied directly and easily, thus it gives a greater computational precision. Some numerical examples are presented to demonstrate the method.展开更多
文摘To improve the treatment efficiency of essential boundary condition in mesh-less methods, a simple and robust method is proposed in this paper. Rising weight of nodes in the construction of trail function, specified for essential boundary condition, can make the trail function pass through these nodes. And then, the trail function can satisfy the essential boundary condition previously by setting diagonal element to 1 or multiplying diagonal element by a big number in FEM. The MLS method is adopted to validate this method, and it is proved that this method is eostless and robust in most of mesh-less methods.
基金Project supported by the National Natural Science Foundation of China (Grant No 10871124)Innovation Program of Shanghai Municipal Education Commission (Grant No 09ZZ99)Shanghai Leading Academic Discipline Project (Grant No J50103)
文摘The interpolating moving least-squares (IMLS) method is discussed first in this paper. And the formulae of the IMLS method obtained by Lancaster are revised. Then on the basis of the boundary element-free method (BEFM), combining the boundary integral equation (BIE) method with the IMLS method, the improved boundary element-free method (IBEFM) for two-dimensional potential problems is presented, and the corresponding formulae of the IBEFM are obtained. In the BEFM, boundary conditions are applied directly, but the shape function in the MLS does not satisfy the property of the Kronecker ~ function. This is a problem of the BEFM, and must be solved theoretically. In the IMLS method, when the shape function satisfies the property of the Kronecker 5 function, then the boundary conditions, in the meshless method based on the IMLS method, can be applied directly. Then the IBEFM, based on the IMLS method, is a direct meshless boundary integral equation method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied directly and easily, thus it gives a greater computational precision. Some numerical examples are presented to demonstrate the method.