The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and elemen...The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and element free Galerkin method(EFGM), and is a truly meshless method possessing wide prospects in engineering applications. The companion solution and all the other formulas required in the meshless local boundary integral equation for a thin plate were presented, in order to make this method apply to solve the thin plate problem.展开更多
The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the bas...The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.展开更多
When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current p...When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current paper, local integral equations are adopted for the nodes inside the domain and moving least square approximation (MLSA) for the nodes on the global boundary, thus singularities will not occur in the new al- gorithm. At the same time, approximation errors of boundary integrals are reduced significantly. As applications and numerical tests, Laplace equation and Helmholtz equation problems are considered and excellent numerical results are obtained. Furthermore, when solving the Helmholtz problems, the modified basis functions with wave solutions are adapted to replace the usually-used monomial basis functions. Numerical results show that this treatment is simple and effective and its application is promising in solutions for the wave propagation problem with high wave number.展开更多
The goal of this study is to solve the neutron diffusion equation by using a meshless method and evaluate its performance compared to traditional methods. This paper proposes a novel method based on coupling the meshl...The goal of this study is to solve the neutron diffusion equation by using a meshless method and evaluate its performance compared to traditional methods. This paper proposes a novel method based on coupling the meshless local Petrov–Galerkin approach and the moving least squares approximation. This computational procedure consists of two main steps. The first involved applying the moving least squares approximation to construct the shape function based on the problem domain. Then, the obtained shape function was used in the meshless local Petrov–Galerkin method to solve the neutron diffusion equation.Because the meshless method is based on eliminating the mesh-based topologies, the problem domain was represented by a set of arbitrarily distributed nodes. There is no need to use meshes or elements for field variable interpolation. The process of node generation is simply and fully automated, which can save time. As this method is a local weak form, it does not require any background integration cells and all integrations are performed locally over small quadrature domains. To evaluate the proposed method,several problems were considered. The results were compared with those obtained from the analytical solution and a Galerkin finite element method. In addition, the proposed method was used to solve neutronic calculations in thesmall modular reactor. The results were compared with those of the citation code and reference values. The accuracy and precision of the proposed method were acceptable. Additionally, adding the number of nodes and selecting an appropriate weight function improved the performance of the meshless local Petrov–Galerkin method. Therefore, the proposed method represents an accurate and alternative method for calculating core neutronic parameters.展开更多
Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, a...Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, and then,its numerical method is proposed by the numerical method of the singular integral equations combined with boundary element method. Moreover, the singular nature of temperature gradient field near the crack front is proved by the main-part analysis method of the singular integral equation, and the singular temperature gradients are exactly obtained. Finally, several typical examples calculated.展开更多
The boundary-volume integral equation numerical technique can be a powerful tool for piecewise heterogeneous media, but it is limited to small problems or low frequencies because of great computational cost. Therefore...The boundary-volume integral equation numerical technique can be a powerful tool for piecewise heterogeneous media, but it is limited to small problems or low frequencies because of great computational cost. Therefore, a restarted GMRES method is applied to solve large-scale boundary-volume scattering problems in this paper to overcome the computational barrier. The iterative method is firstly applied to responses of dimensionless frequency to a semicircular alluvial valley filled with sediments, compared with the standard Gaussian elimination method. Then the method is tested by a heterogeneous multilayered model to show its applicability. Numerical experiments indicate that the preconditioned GMRES method can significantly improve computational efficiency especially for large Earth models and high frequencies, but with a faster convergence for the left diagonal preconditioning.展开更多
A novel numerical method for eliminating the singular integral and boundary effect is processed. In the proposed method, the virtual boundaries corresponding to the numbers of the true boundary arguments are chosen to...A novel numerical method for eliminating the singular integral and boundary effect is processed. In the proposed method, the virtual boundaries corresponding to the numbers of the true boundary arguments are chosen to be as simple as possible. An indirect radial basis function network (IRBFN) constructed by functions resulting from the indeterminate integral is used to construct the approaching virtual source functions distributed along the virtual boundaries. By using the linear superposition method, the governing equations presented in the boundaries integral equations (BIE) can be established while the fundamental solutions to the problems are introduced. The singular value decomposition (SVD) method is used to solve the governing equations since an optimal solution in the least squares sense to the system equations is available. In addition, no elements are required, and the boundary conditions can be imposed easily because of the Kronecker delta function properties of the approaching functions. Three classical 2D elasticity problems have been examined to verify the performance of the method proposed. The results show that this method has faster convergence and higher accuracy than the conventional boundary type numerical methods.展开更多
By means of Fourier integral transformation of generalized function, the fundamental solution for the bending problem of plates on two-parameter foundation is derived in this paper, and the fundamental solution is exp...By means of Fourier integral transformation of generalized function, the fundamental solution for the bending problem of plates on two-parameter foundation is derived in this paper, and the fundamental solution is expanded into a uniformly convergent series. On the basis of the above work, two boundary integral equations which are suitable to arbitrary shapes and arbitrary boundary conditions are established by means of the Rayleigh-Green identity. The content of the paper provides the powerful theories for the application of BEM in this problem.展开更多
For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geomet...For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.展开更多
This study is concerned with the numerical approximation of the extended Fisher-Kolmogorov equation with a modified boundary integral method. A key aspect of this formulation is that it relaxes the domain-driven appro...This study is concerned with the numerical approximation of the extended Fisher-Kolmogorov equation with a modified boundary integral method. A key aspect of this formulation is that it relaxes the domain-driven approach of a typical boundary element (BEM) technique. While its discretization keeps faith with the second order accurate BEM formulation, its implementation is element-based. This leads to a local solution of all integral equation and their final assembly into a slender and banded coefficient matrix which is far easier to manipulate numerically. This outcome is much better than working with BEM’s fully populated coefficient matrices resulting from a numerical encounter with the problem domain especially for nonlinear, transient, and heterogeneous problems. Faithful results of high accuracy are achieved when the results obtained herein are compared with those available in literature.展开更多
In this work,a numerical scheme is constructed for solving nonlinear parabolictype partial-integro differential equations.The proposed numerical scheme is based on radial basis functions which are local in nature like...In this work,a numerical scheme is constructed for solving nonlinear parabolictype partial-integro differential equations.The proposed numerical scheme is based on radial basis functions which are local in nature like finite difference numerical schemes.The radial basis functions are used to approximate the derivatives involved and the integral is approximated by equal width integration rule.The resultant differentiation matrices are sparse in nature.After spatial approximation using RBF the partial integro-differential equations reduce to the system of ODEs.Then ODEs system can be solved by various types of ODE solvers.The proposed numerical scheme is tested and compared with other methods available in literature for different test problems.The stability and convergence of the present numerical scheme are discussed.展开更多
Sometimes boundary value problems have isolated regions where the solution changes rapidly.Therefore,when solving numerically,one needs a fine grid to capture the high activity.The fine grid can be implemented as a co...Sometimes boundary value problems have isolated regions where the solution changes rapidly.Therefore,when solving numerically,one needs a fine grid to capture the high activity.The fine grid can be implemented as a composite coarse-fine grid or as a global fine grid.One cheaper way of obtaining the composite grid solution is the use of the local defect correction technique.The technique is an algorithm that combines a global coarse grid solution and a local fine grid solution in an iterative way to estimate the solution on the corresponding composite grid.The algorithm is relatively new and its convergence properties have not been studied for the boundary element method.In this paper the objective is to determine convergence properties of the algorithm for the boundary element method.First,we formulate the algorithm as a fixed point iterative scheme,which has also not been done before for the boundary element method,and then study the properties of the iteration matrix.Results show that we can always expect convergence.Therefore,the algorithm opens up a real alternative for application in the boundary element method for problems with localised regions of high activity.展开更多
Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and ...Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and this method employs the adaptive Cartesian grid to improve the adaptability to complex shapes and the immersed boundary to increase computational e ciency. The new immersed boundary method employs different boundary cells(the physical cell and ghost cell) to impose the boundary condition and the reconstruction algorithm of the ghost cell is the key for this method. The classical model elliptic equation is used to test the method. This method is tested and analyzed from the viewpoints of boundary cell type, error distribution and accuracy. The numerical result shows that the presented method has low error and a good rate of the convergence and works well in complex geometries. The method has good prospect for practical application research of the numerical calculation research.展开更多
Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical techniq...Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical technique of non-analytic continuation and is fully proved by means of the variational principle. The previous three kinds of boundary integral equations with indirect unknowns are discussed thoroughly and it is shown that all previous results are not EBIE.展开更多
In this paper, we study the classical Allen-Cahn equations and investigate the maximum- principle-preserving (MPP) techniques. The Allen-Cahn equation has been widely used in mathematical models for problems in materi...In this paper, we study the classical Allen-Cahn equations and investigate the maximum- principle-preserving (MPP) techniques. The Allen-Cahn equation has been widely used in mathematical models for problems in materials science and fluid dynamics. It enjoys the energy stability and the maximum-principle. Moreover, it is well known that the Allen- Cahn equation may yield thin interface layer, and nonuniform meshes might be useful in the numerical solutions. Therefore, we apply the local discontinuous Galerkin (LDG) method due to its flexibility on h-p adaptivity and complex geometry. However, the MPP LDG methods require slope limiters, then the energy stability may not be easy to obtain. In this paper, we only discuss the MPP technique and use numerical experiments to dem-onstrate the energy decay property. Moreover, due to the stiff source given in the equation, we use the conservative modified exponential Runge-Kutta methods and thus can use rela-tively large time step sizes. Thanks to the conservative time integration, the bounds of the unknown function will not decay. Numerical experiments will be given to demonstrate the good performance of the MPP LDG scheme.展开更多
A simple Local Boundary Integral Equation(LBIE)method for solving the Fisher nonlinear transient diffusion equation in two dimensions(2D)is reported.The method utilizes,for its meshless implementation,randomly distrib...A simple Local Boundary Integral Equation(LBIE)method for solving the Fisher nonlinear transient diffusion equation in two dimensions(2D)is reported.The method utilizes,for its meshless implementation,randomly distributed nodal points in the interior domain and nodal points corresponding to a Boundary Element Method(BEM)mesh,at the global boundary.The interpolation of the interior and boundary potentials is accomplished using a Local Radial Basis Functions(LRBF)scheme.At the nodes of global boundary the potentials and their fluxes are treated as independent variables.On the local boundaries,potential fluxes are avoided by using the Laplacian companion solution.Potential gradients are accurately evaluated without RBFs via a LBIE,valid for gradient of potentials.Nonlinearity is treated using the Newton-Raphson scheme.The accuracy of the proposed methodology is demonstrated through representative numerical examples.Fisher equation is solved here via the LBIE/LRBF method in order to predict cell proliferation during bone healing.Cell concentrations and their gradients are numerically evaluated in a 2D model of fractured bone.The results are demonstrated and discussed.展开更多
A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The...A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The model is closely derived from the concept of the equivalent inclusion Of Eshelby tensors. Eigenstrains are iteratively determined for each short-fiber embedded in the matrix with various properties via the Eshelby tensors, which can be readily obtained beforehand either through analytical or numerical means. As unknown variables appear only on the boundary of the solution domain, the solution scale of the inhomogeneity problem with the model is greatly reduced. This feature is considered significant because such a traditionally time-consuming problem with inhomogeneity can be solved most cost-effectively compared with existing numerical models of the FEM or the BEM. The numerical examples are presented to compute the overall elastic properties for various short-fiber reinforced composites over a representative volume element (RVE), showing the validity and the effectiveness of the proposed computational modal and the solution procedure.展开更多
The properties of the fundamental solution are derived in linear elastostatics. These properties are used to show that the conventional displacement and traction boundary integral equations yield non-unique displaceme...The properties of the fundamental solution are derived in linear elastostatics. These properties are used to show that the conventional displacement and traction boundary integral equations yield non-unique displacement solutions in a traction boundary value problem. The condition for the existence of unique displacement solutions is proposed for the traction boundary value problem. The degrees of freedom of the displacement solution are removed by the condition to obtain the boundary integral equations of unique solutions for the traction boundary value problems. Numerical example is presented to demonstrate the accuracy and efficiency of the present equations.展开更多
Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation co...Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation condition is imposed,free waves appear both far upstream and downstream. In order to cancel the free waves in far upstream regions, the eigensolution of a specific eigenvalue, which satisfies the homogeneous boundary integral equation, is found and superposed to the analytical solution. An example, a submerged vortex, is used to demonstrate the derived analytical solution. Furthermore,an analytical approach to imposing the radiation condition in the numerical solution of boundary integral equations for 2-D steady linear wave problems is proposed.展开更多
A local meshless method is applied to find the numerical solutions of two classes of inverse problems in parabolic equations. The problem is reconstructing the source term using a solution specified at some internal p...A local meshless method is applied to find the numerical solutions of two classes of inverse problems in parabolic equations. The problem is reconstructing the source term using a solution specified at some internal points;one class is that the source term is time dependent, and the other class is that the source term is time and space dependent. Some numerical experiments are presented and discussed.展开更多
文摘The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and element free Galerkin method(EFGM), and is a truly meshless method possessing wide prospects in engineering applications. The companion solution and all the other formulas required in the meshless local boundary integral equation for a thin plate were presented, in order to make this method apply to solve the thin plate problem.
文摘The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.
文摘When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current paper, local integral equations are adopted for the nodes inside the domain and moving least square approximation (MLSA) for the nodes on the global boundary, thus singularities will not occur in the new al- gorithm. At the same time, approximation errors of boundary integrals are reduced significantly. As applications and numerical tests, Laplace equation and Helmholtz equation problems are considered and excellent numerical results are obtained. Furthermore, when solving the Helmholtz problems, the modified basis functions with wave solutions are adapted to replace the usually-used monomial basis functions. Numerical results show that this treatment is simple and effective and its application is promising in solutions for the wave propagation problem with high wave number.
文摘The goal of this study is to solve the neutron diffusion equation by using a meshless method and evaluate its performance compared to traditional methods. This paper proposes a novel method based on coupling the meshless local Petrov–Galerkin approach and the moving least squares approximation. This computational procedure consists of two main steps. The first involved applying the moving least squares approximation to construct the shape function based on the problem domain. Then, the obtained shape function was used in the meshless local Petrov–Galerkin method to solve the neutron diffusion equation.Because the meshless method is based on eliminating the mesh-based topologies, the problem domain was represented by a set of arbitrarily distributed nodes. There is no need to use meshes or elements for field variable interpolation. The process of node generation is simply and fully automated, which can save time. As this method is a local weak form, it does not require any background integration cells and all integrations are performed locally over small quadrature domains. To evaluate the proposed method,several problems were considered. The results were compared with those obtained from the analytical solution and a Galerkin finite element method. In addition, the proposed method was used to solve neutronic calculations in thesmall modular reactor. The results were compared with those of the citation code and reference values. The accuracy and precision of the proposed method were acceptable. Additionally, adding the number of nodes and selecting an appropriate weight function improved the performance of the meshless local Petrov–Galerkin method. Therefore, the proposed method represents an accurate and alternative method for calculating core neutronic parameters.
文摘Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, and then,its numerical method is proposed by the numerical method of the singular integral equations combined with boundary element method. Moreover, the singular nature of temperature gradient field near the crack front is proved by the main-part analysis method of the singular integral equation, and the singular temperature gradients are exactly obtained. Finally, several typical examples calculated.
基金supported by the National Natural Science Foundation of China(Nos. 41130418 and 40925013)the National Basic Research Program(973 Program)(No.2009CB219403)
文摘The boundary-volume integral equation numerical technique can be a powerful tool for piecewise heterogeneous media, but it is limited to small problems or low frequencies because of great computational cost. Therefore, a restarted GMRES method is applied to solve large-scale boundary-volume scattering problems in this paper to overcome the computational barrier. The iterative method is firstly applied to responses of dimensionless frequency to a semicircular alluvial valley filled with sediments, compared with the standard Gaussian elimination method. Then the method is tested by a heterogeneous multilayered model to show its applicability. Numerical experiments indicate that the preconditioned GMRES method can significantly improve computational efficiency especially for large Earth models and high frequencies, but with a faster convergence for the left diagonal preconditioning.
文摘A novel numerical method for eliminating the singular integral and boundary effect is processed. In the proposed method, the virtual boundaries corresponding to the numbers of the true boundary arguments are chosen to be as simple as possible. An indirect radial basis function network (IRBFN) constructed by functions resulting from the indeterminate integral is used to construct the approaching virtual source functions distributed along the virtual boundaries. By using the linear superposition method, the governing equations presented in the boundaries integral equations (BIE) can be established while the fundamental solutions to the problems are introduced. The singular value decomposition (SVD) method is used to solve the governing equations since an optimal solution in the least squares sense to the system equations is available. In addition, no elements are required, and the boundary conditions can be imposed easily because of the Kronecker delta function properties of the approaching functions. Three classical 2D elasticity problems have been examined to verify the performance of the method proposed. The results show that this method has faster convergence and higher accuracy than the conventional boundary type numerical methods.
文摘By means of Fourier integral transformation of generalized function, the fundamental solution for the bending problem of plates on two-parameter foundation is derived in this paper, and the fundamental solution is expanded into a uniformly convergent series. On the basis of the above work, two boundary integral equations which are suitable to arbitrary shapes and arbitrary boundary conditions are established by means of the Rayleigh-Green identity. The content of the paper provides the powerful theories for the application of BEM in this problem.
文摘For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.
文摘This study is concerned with the numerical approximation of the extended Fisher-Kolmogorov equation with a modified boundary integral method. A key aspect of this formulation is that it relaxes the domain-driven approach of a typical boundary element (BEM) technique. While its discretization keeps faith with the second order accurate BEM formulation, its implementation is element-based. This leads to a local solution of all integral equation and their final assembly into a slender and banded coefficient matrix which is far easier to manipulate numerically. This outcome is much better than working with BEM’s fully populated coefficient matrices resulting from a numerical encounter with the problem domain especially for nonlinear, transient, and heterogeneous problems. Faithful results of high accuracy are achieved when the results obtained herein are compared with those available in literature.
文摘In this work,a numerical scheme is constructed for solving nonlinear parabolictype partial-integro differential equations.The proposed numerical scheme is based on radial basis functions which are local in nature like finite difference numerical schemes.The radial basis functions are used to approximate the derivatives involved and the integral is approximated by equal width integration rule.The resultant differentiation matrices are sparse in nature.After spatial approximation using RBF the partial integro-differential equations reduce to the system of ODEs.Then ODEs system can be solved by various types of ODE solvers.The proposed numerical scheme is tested and compared with other methods available in literature for different test problems.The stability and convergence of the present numerical scheme are discussed.
文摘Sometimes boundary value problems have isolated regions where the solution changes rapidly.Therefore,when solving numerically,one needs a fine grid to capture the high activity.The fine grid can be implemented as a composite coarse-fine grid or as a global fine grid.One cheaper way of obtaining the composite grid solution is the use of the local defect correction technique.The technique is an algorithm that combines a global coarse grid solution and a local fine grid solution in an iterative way to estimate the solution on the corresponding composite grid.The algorithm is relatively new and its convergence properties have not been studied for the boundary element method.In this paper the objective is to determine convergence properties of the algorithm for the boundary element method.First,we formulate the algorithm as a fixed point iterative scheme,which has also not been done before for the boundary element method,and then study the properties of the iteration matrix.Results show that we can always expect convergence.Therefore,the algorithm opens up a real alternative for application in the boundary element method for problems with localised regions of high activity.
基金Supported by National Natural Science Foundation of China(Grant No.51405375)National Key Basic Research and Development Program of China(973 Program,Grant No.2011CB706606)
文摘Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and this method employs the adaptive Cartesian grid to improve the adaptability to complex shapes and the immersed boundary to increase computational e ciency. The new immersed boundary method employs different boundary cells(the physical cell and ghost cell) to impose the boundary condition and the reconstruction algorithm of the ghost cell is the key for this method. The classical model elliptic equation is used to test the method. This method is tested and analyzed from the viewpoints of boundary cell type, error distribution and accuracy. The numerical result shows that the presented method has low error and a good rate of the convergence and works well in complex geometries. The method has good prospect for practical application research of the numerical calculation research.
文摘Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical technique of non-analytic continuation and is fully proved by means of the variational principle. The previous three kinds of boundary integral equations with indirect unknowns are discussed thoroughly and it is shown that all previous results are not EBIE.
基金Jie Du is supported by the National Natural Science Foundation of China under Grant Number NSFC 11801302Tsinghua University Initiative Scientific Research Program+1 种基金Eric Chung is supported by Hong Kong RGC General Research Fund(Projects 14304217 and 14302018)The third author is supported by the NSF grant DMS-1818467.
文摘In this paper, we study the classical Allen-Cahn equations and investigate the maximum- principle-preserving (MPP) techniques. The Allen-Cahn equation has been widely used in mathematical models for problems in materials science and fluid dynamics. It enjoys the energy stability and the maximum-principle. Moreover, it is well known that the Allen- Cahn equation may yield thin interface layer, and nonuniform meshes might be useful in the numerical solutions. Therefore, we apply the local discontinuous Galerkin (LDG) method due to its flexibility on h-p adaptivity and complex geometry. However, the MPP LDG methods require slope limiters, then the energy stability may not be easy to obtain. In this paper, we only discuss the MPP technique and use numerical experiments to dem-onstrate the energy decay property. Moreover, due to the stiff source given in the equation, we use the conservative modified exponential Runge-Kutta methods and thus can use rela-tively large time step sizes. Thanks to the conservative time integration, the bounds of the unknown function will not decay. Numerical experiments will be given to demonstrate the good performance of the MPP LDG scheme.
文摘A simple Local Boundary Integral Equation(LBIE)method for solving the Fisher nonlinear transient diffusion equation in two dimensions(2D)is reported.The method utilizes,for its meshless implementation,randomly distributed nodal points in the interior domain and nodal points corresponding to a Boundary Element Method(BEM)mesh,at the global boundary.The interpolation of the interior and boundary potentials is accomplished using a Local Radial Basis Functions(LRBF)scheme.At the nodes of global boundary the potentials and their fluxes are treated as independent variables.On the local boundaries,potential fluxes are avoided by using the Laplacian companion solution.Potential gradients are accurately evaluated without RBFs via a LBIE,valid for gradient of potentials.Nonlinearity is treated using the Newton-Raphson scheme.The accuracy of the proposed methodology is demonstrated through representative numerical examples.Fisher equation is solved here via the LBIE/LRBF method in order to predict cell proliferation during bone healing.Cell concentrations and their gradients are numerically evaluated in a 2D model of fractured bone.The results are demonstrated and discussed.
基金Project supported by the National Natural Science Foundation of China (No.10772106)
文摘A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The model is closely derived from the concept of the equivalent inclusion Of Eshelby tensors. Eigenstrains are iteratively determined for each short-fiber embedded in the matrix with various properties via the Eshelby tensors, which can be readily obtained beforehand either through analytical or numerical means. As unknown variables appear only on the boundary of the solution domain, the solution scale of the inhomogeneity problem with the model is greatly reduced. This feature is considered significant because such a traditionally time-consuming problem with inhomogeneity can be solved most cost-effectively compared with existing numerical models of the FEM or the BEM. The numerical examples are presented to compute the overall elastic properties for various short-fiber reinforced composites over a representative volume element (RVE), showing the validity and the effectiveness of the proposed computational modal and the solution procedure.
文摘The properties of the fundamental solution are derived in linear elastostatics. These properties are used to show that the conventional displacement and traction boundary integral equations yield non-unique displacement solutions in a traction boundary value problem. The condition for the existence of unique displacement solutions is proposed for the traction boundary value problem. The degrees of freedom of the displacement solution are removed by the condition to obtain the boundary integral equations of unique solutions for the traction boundary value problems. Numerical example is presented to demonstrate the accuracy and efficiency of the present equations.
文摘Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation condition is imposed,free waves appear both far upstream and downstream. In order to cancel the free waves in far upstream regions, the eigensolution of a specific eigenvalue, which satisfies the homogeneous boundary integral equation, is found and superposed to the analytical solution. An example, a submerged vortex, is used to demonstrate the derived analytical solution. Furthermore,an analytical approach to imposing the radiation condition in the numerical solution of boundary integral equations for 2-D steady linear wave problems is proposed.
文摘A local meshless method is applied to find the numerical solutions of two classes of inverse problems in parabolic equations. The problem is reconstructing the source term using a solution specified at some internal points;one class is that the source term is time dependent, and the other class is that the source term is time and space dependent. Some numerical experiments are presented and discussed.