In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp...In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.展开更多
In the present work, the improved version of the meshless singular boundary method(ISBM) is developed for analyzing the performance of bottom standing submerged permeable breakwaters in regular normally incident waves...In the present work, the improved version of the meshless singular boundary method(ISBM) is developed for analyzing the performance of bottom standing submerged permeable breakwaters in regular normally incident waves and in the proximity of a vertical wall. Both single and dual prismatic breakwaters of rectangular and trapezoidal forms are examined. The physical problem is cast in terms of the Laplace equation governing an irrotational flow and incompressible fluid motion with appropriate mixed type boundary conditions, and solved numerically using the ISBM. To model the permeability of the breakwaters fully absorbing boundary conditions are assumed. Numerical results are presented in terms of hydrodynamic quantities of the reflection coefficients. These are firstly validated against the results of a multi-domain boundary element method(BEM) developed independently for a previous study. The agreement between the results of the two methods is excellent. The coefficients of reflection are then computed and discussed for a variety of structural conditions including the breakwaters height, width, spacing, and absorbing permeability. Effects of the proximity of the vertical plane wall are also investigated. The breakwater's width is found to have only marginal effects compared with its height. Permeability tends to decrease the minimum reflections. These coefficients show periodic variations with the spacing relative to the wavelength. Trapezoidal breakwaters are found to be more cost-effective than the rectangular breakwaters. Dual breakwater systems are confirmed to perform much better than single structures.展开更多
Thin structures are generally solved by the Finite Element Method(FEM), using plate or shell finite elements which have manylimitations in applications, such as numerical locking, edge effects,length scaling and the c...Thin structures are generally solved by the Finite Element Method(FEM), using plate or shell finite elements which have manylimitations in applications, such as numerical locking, edge effects,length scaling and the cnvergence problem. Recently, by proposing anew approach to tranting the nearly- singular integrals, Liu et al.developed a BEM to successfully solve thin structures with thethickness-to- length ratios in the micro-or nano-scales. On the otherhand, the meshless Regular Hybrid Boundary Node Method (RHBNM), whichis proposed by the current authors and based on a modified functionaland the Moving Least-Square (MLS) approximation, has very promisingapplications for engineering problems owing To its meshless natureand dimension-reduction advantage, and not involving any singular ornearly-singular Integrals. Test examples show that the RHBNM can alsobe applied readily to thin structures with high accu- Racy withoutany modification.展开更多
In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is pres...In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper.展开更多
The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many fact...The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many factors, including the dimension of compact support domain, the dimension of quadrture domain, the number of integral cells and the number of Gauss points. These factors' sensitivity analysis is to adopt the Taguchi experimental design technology and point out the dimension of the quadrature domain with the largest influence on the computational accuracy of the present MLPGM for shells and give out the optimum combination of these factors. A few examples are given to verify the reliability and good convergence of MLPGM for shell problems compared to the theoretical or the finite element results.展开更多
Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the movi...Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the moving Kriging inter- polation is developed for a two-dimensional time-fractional diffusion equation. The shape function and its derivatives are obtained by the moving Kriging interpolation technique. For possessing the Kronecker delta property, this technique is very efficient in imposing the essential boundary conditions. The governing time-fractional diffusion equations are transformed into a standard weak formulation by the Galerkin method. It is then discretized into a meshfree system of time-dependent equations, which are solved by the standard central difference method. Numerical examples illustrating the applicability and effectiveness of the proposed method are presented and discussed in detail.展开更多
We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin...We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis.展开更多
Using the two-scale decomposition technique, the h-adaptive meshless local Petrov- Galerkin method for solving Mindlin plate and shell problems is presented. The scaling functions of B spline wavelet are employed as t...Using the two-scale decomposition technique, the h-adaptive meshless local Petrov- Galerkin method for solving Mindlin plate and shell problems is presented. The scaling functions of B spline wavelet are employed as the basis of the moving least square method to construct the meshless interpolation function. Multi-resolution analysis is used to decompose the field variables into high and low scales and the high scale component can commonly represent the gradient of the solution according to inherent characteristics of wavelets. The high scale component in the present method can directly detect high gradient regions of the field variables. The developed adaptive refinement scheme has been applied to simulate actual examples, and the effectiveness of the present adaptive refinement scheme has been verified.展开更多
Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential proble...Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.展开更多
Combining moving least square approximations and boundary integral equations, a meshless Galerkin method, which is the Galerkin boundary node method (GBNM), for twoand three-dimensional infinite elastic solid mechan...Combining moving least square approximations and boundary integral equations, a meshless Galerkin method, which is the Galerkin boundary node method (GBNM), for twoand three-dimensional infinite elastic solid mechanics problems with traction boundary conditions is discussed. In this numerical method, the resulting formulation inherits the symmetry and positive definiteness of variational problems, and boundary conditions can be applied directly and easily. A rigorous error analysis and convergence study for both displacement and stress is presented in Sobolev spaces. The capability of this method is illustrated and assessed by some numerical examples.展开更多
In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equi...In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency.展开更多
Multiresolution analysis of wavelet theory can give an effective way to describe the information at various levels of approximations or different resolutions, based on spline wavelet analysis,so weight function is ort...Multiresolution analysis of wavelet theory can give an effective way to describe the information at various levels of approximations or different resolutions, based on spline wavelet analysis,so weight function is orthonormally projected onto a sequence of closed spline subspaces, and is viewed at various levels of approximations or different resolutions. Now, the useful new way to research weight function is found, and the numerical result is given.展开更多
Special transmission 3D model simulation must be based on surface discretization and reconstruction, but special transmission usually has complicated tooth shape and movement, so present software can't provide techni...Special transmission 3D model simulation must be based on surface discretization and reconstruction, but special transmission usually has complicated tooth shape and movement, so present software can't provide technical support for special transmission 3D model simulation. Currently, theoretical calculation and experimental method are difficult to exactly solve special transmission contact analysis problem. How to reduce calculation and computer memories consume and meet calculation precision is key to resolve special transmission contact analysis problem. According to 3D model simulation and surface reconstruction of quasi ellipsoid gear is difficulty, this paper employes meshless local Petrov-Galerkin (MLPG) method. In order to reduce calculation and computer memories consume, we disperse tooth mesh into finite points--sparseness points cloud or grid mesh, and then we do interpolation reconstruction in some necessary place of the 3D surface model during analysis. Moving least square method (MLSM) is employed for tooth mesh interpolation reconstruction, there are some advantages to do interpolation by means of MLSM, such as high precision, good flexibility and no require of tooth mesh discretization into units. We input the quasi ellipsoid gear reconstruction model into simulation software, we complete tooth meshing simulation. Simulation transmission ratio during meshing period was obtained, compared with theoretical transmission ratio, the result inosculate preferably. The method using curve reconstruction realizes surface reconstruction, reduce simulation calculation enormously, so special gears simulation can be realized by minitype computer. The method provides a novel solution for special transmission 3D model simulation analysis and contact analysis.展开更多
The singular hybrid boundary node method (SHBNM) is proposed for solving three-dimensional problems in linear elasticity. The SHBNM represents a coupling between the hybrid displacement variational formulations and ...The singular hybrid boundary node method (SHBNM) is proposed for solving three-dimensional problems in linear elasticity. The SHBNM represents a coupling between the hybrid displacement variational formulations and moving least squares (MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the later. The rigid movement method was employed to solve the hyper-singular integrations. The 'boundary layer effect', which is the main drawback of the original Hybrid BNM, was overcome by an adaptive integration scheme. The source points of the fundamental solution were arranged directly on the boundary. Thus the uncertain scale factor taken in the regular hybrid boundary node method (RHBNM) can be avoided. Numerical examples for some 3D elastic problems were given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution. The parameters that influence the performance of this method were studied through the numerical examples.展开更多
A new direct method for solving unsymmetrical sparse linear systems(USLS) arising from meshless methods was introduced. Computation of certain meshless methods such as meshless local Petrov-Galerkin (MLPG) method ...A new direct method for solving unsymmetrical sparse linear systems(USLS) arising from meshless methods was introduced. Computation of certain meshless methods such as meshless local Petrov-Galerkin (MLPG) method need to solve large USLS. The proposed solution method for unsymmetrical case performs factorization processes symmetrically on the upper and lower triangular portion of matrix, which differs from previous work based on general unsymmetrical process, and attains higher performance. It is shown that the solution algorithm for USLS can be simply derived from the existing approaches for the symmetrical case. The new matrix factorization algorithm in our method can be implemented easily by modifying a standard JKI symmetrical matrix factorization code. Multi-blocked out-of-core strategies were also developed to expand the solution scale. The approach convincingly increases the speed of the solution process, which is demonstrated with the numerical tests.展开更多
In this paper, the improved version of the meshless singular boundary method (ISBM) is developed for analyzing the hydrodynamic performance of bottom-standing submerged breakwaters in regular normally incident waves. ...In this paper, the improved version of the meshless singular boundary method (ISBM) is developed for analyzing the hydrodynamic performance of bottom-standing submerged breakwaters in regular normally incident waves. Both the single and dual prismatic breakwaters of rectangular and trapezoidal forms are examined. Only the impermeable breakwaters are considered in this study. The physical problem is cast in terms of the Laplace equation governing an irrotational flow and incompressible fluid motion with the appropriate mixed-type boundary conditions, and it is solved numerically using the ISBM. The numerical results are presented in terms of the hydrodynamic quantities of reflection and transmission coefficients. The values are first validated against the data of previous studies, computed, and discussed for a variety of structural conditions, including the height, width, and spacing of breakwater submergence. An excellent agreement is observed between the ISBM results and those of other methods. The breakwater width is found to feature marginal effects compared with the height. The present method is shown to accurately predict the resonant conditions at which the maximum reflection and transmission occur. The trapezoidal breakwaters are found to generally present a wide spectrum of reflections, suggesting that they would function better than the rectangular breakwaters. The dual breakwater systems are confirmed to perform much better than single structures.展开更多
Numerical quadrature is an important ingredient of Galerkin meshless methods. A new numerical quadrature technique, partition of unity quadrature (PUQ),for Galerkin meshless methods was presented. The technique is b...Numerical quadrature is an important ingredient of Galerkin meshless methods. A new numerical quadrature technique, partition of unity quadrature (PUQ),for Galerkin meshless methods was presented. The technique is based on finite covering and partition of unity. There is no need to decompose the physical domain into small cell. It possesses remarkable integration accuracy. Using Element-free Galerkin methods as example, Galerkin meshless methods based on PUQ were studied in detail. Meshing is always not required in the procedure of constitution of approximate function or numerical quadrature, so Galerkin meshless methods based on PUQ are “truly” meshless methods.展开更多
An h-adaptive meshless method is proposed in this paper. The error estimation is based on local fit technology, usually confined to Voronoi Cells. The error is achieved by comparison of the computational results with ...An h-adaptive meshless method is proposed in this paper. The error estimation is based on local fit technology, usually confined to Voronoi Cells. The error is achieved by comparison of the computational results with smoothed ones, which are projected with Taylor series. Voronoi Cells are introduced not only for integration of potential energy but also for guidance of refinement. New nodes are placed within those cells with high estimated error. At the end of the paper, two numerical examples with severe stress gradient are analyzed. Through adaptive analysis accurate results are obtained at critical subdomains, which validates the efficiency of the method.展开更多
The element-free Galerkin (EFG) method for numerically solving the compound Korteweg-de Vries-Burgers (KdVB) equation is discussed in this paper. The Galerkin weak form is used to obtain the discrete equation and ...The element-free Galerkin (EFG) method for numerically solving the compound Korteweg-de Vries-Burgers (KdVB) equation is discussed in this paper. The Galerkin weak form is used to obtain the discrete equation and the essential boundary conditions are enforced by the penalty method. The effectiveness of the EFG method of solving the compound Korteweg-de Vries-Burgers (KdVB) equation is illustrated by three numerical examples.展开更多
A meshless method integrated with linear elastic fracture mechanics(LEFM)is presented for 2D mixed-mode crack propagation analysis.The domain is divided automatically into sub-domains based on Voronoi cells,which are ...A meshless method integrated with linear elastic fracture mechanics(LEFM)is presented for 2D mixed-mode crack propagation analysis.The domain is divided automatically into sub-domains based on Voronoi cells,which are used for quadrature for the potential energy. The continuous crack propagation is simulated with an incremental crack-extension method which assumes a piecewise linear discretization of the unknown crack path.For each increment of the crack extension,the meshless method is applied to carry out a stress analysis of the cracked structure.The J-integral,which can be decomposed into mode Ⅰ and mode Ⅱ for mixed-mode crack,is used for the evaluation of the stress intensity factors(SIFs).The crack-propagation direction,predicted on an incremental basis, is computed by a criterion defined in terms of the SIFs. The flowchart of the proposed procedure is presented and two numerical problems are analyzed with this method.The meshless results agree well with the experimental ones,which validates the accuracy and efficiency of the method.展开更多
文摘In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.
基金financially supported by the Direction Général des Enseignements et de la Formation Supérieure of Algeria(Grant CNEPRU No.G0301920140029)
文摘In the present work, the improved version of the meshless singular boundary method(ISBM) is developed for analyzing the performance of bottom standing submerged permeable breakwaters in regular normally incident waves and in the proximity of a vertical wall. Both single and dual prismatic breakwaters of rectangular and trapezoidal forms are examined. The physical problem is cast in terms of the Laplace equation governing an irrotational flow and incompressible fluid motion with appropriate mixed type boundary conditions, and solved numerically using the ISBM. To model the permeability of the breakwaters fully absorbing boundary conditions are assumed. Numerical results are presented in terms of hydrodynamic quantities of the reflection coefficients. These are firstly validated against the results of a multi-domain boundary element method(BEM) developed independently for a previous study. The agreement between the results of the two methods is excellent. The coefficients of reflection are then computed and discussed for a variety of structural conditions including the breakwaters height, width, spacing, and absorbing permeability. Effects of the proximity of the vertical plane wall are also investigated. The breakwater's width is found to have only marginal effects compared with its height. Permeability tends to decrease the minimum reflections. These coefficients show periodic variations with the spacing relative to the wavelength. Trapezoidal breakwaters are found to be more cost-effective than the rectangular breakwaters. Dual breakwater systems are confirmed to perform much better than single structures.
文摘Thin structures are generally solved by the Finite Element Method(FEM), using plate or shell finite elements which have manylimitations in applications, such as numerical locking, edge effects,length scaling and the cnvergence problem. Recently, by proposing anew approach to tranting the nearly- singular integrals, Liu et al.developed a BEM to successfully solve thin structures with thethickness-to- length ratios in the micro-or nano-scales. On the otherhand, the meshless Regular Hybrid Boundary Node Method (RHBNM), whichis proposed by the current authors and based on a modified functionaland the Moving Least-Square (MLS) approximation, has very promisingapplications for engineering problems owing To its meshless natureand dimension-reduction advantage, and not involving any singular ornearly-singular Integrals. Test examples show that the RHBNM can alsobe applied readily to thin structures with high accu- Racy withoutany modification.
基金Project supported by the National Natural Science Foundation of China(Grant No.11171208)the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)the Innovation Fund for Graduate Student of Shanghai University of China (Grant No.SHUCX120125)
文摘In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper.
基金the Scientific Foundation of National Outstanding Youth of China(No.50225520)the Science Foundation of Shandong University of Technology of China(No.2006KJM33).
文摘The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many factors, including the dimension of compact support domain, the dimension of quadrture domain, the number of integral cells and the number of Gauss points. These factors' sensitivity analysis is to adopt the Taguchi experimental design technology and point out the dimension of the quadrature domain with the largest influence on the computational accuracy of the present MLPGM for shells and give out the optimum combination of these factors. A few examples are given to verify the reliability and good convergence of MLPGM for shell problems compared to the theoretical or the finite element results.
基金Project supported by the National Natural Science Foundation of China(Grant No.11072117)the Natural Science Foundation of Ningbo City,China(GrantNo.2013A610103)+2 种基金the Natural Science Foundation of Zhejiang Province,China(Grant No.Y6090131)the Disciplinary Project of Ningbo City,China(GrantNo.SZXL1067)the K.C.Wong Magna Fund in Ningbo University,China
文摘Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the moving Kriging inter- polation is developed for a two-dimensional time-fractional diffusion equation. The shape function and its derivatives are obtained by the moving Kriging interpolation technique. For possessing the Kronecker delta property, this technique is very efficient in imposing the essential boundary conditions. The governing time-fractional diffusion equations are transformed into a standard weak formulation by the Galerkin method. It is then discretized into a meshfree system of time-dependent equations, which are solved by the standard central difference method. Numerical examples illustrating the applicability and effectiveness of the proposed method are presented and discussed in detail.
基金Project supported by the National Natural Science Foundation of China(Grant No.11471063)the Chongqing Research Program of Basic Research and Frontier Technology,China(Grant No.cstc2015jcyj BX0083)the Educational Commission Foundation of Chongqing City,China(Grant No.KJ1600330)
文摘We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis.
基金supported by the Scientific Foundation of National Outstanding Youth of China(No.50225520)Science Foundation of Shandong University of Technology of China(No.2006KJM33).
文摘Using the two-scale decomposition technique, the h-adaptive meshless local Petrov- Galerkin method for solving Mindlin plate and shell problems is presented. The scaling functions of B spline wavelet are employed as the basis of the moving least square method to construct the meshless interpolation function. Multi-resolution analysis is used to decompose the field variables into high and low scales and the high scale component can commonly represent the gradient of the solution according to inherent characteristics of wavelets. The high scale component in the present method can directly detect high gradient regions of the field variables. The developed adaptive refinement scheme has been applied to simulate actual examples, and the effectiveness of the present adaptive refinement scheme has been verified.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11102125)
文摘Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.
基金supported by the National Natural Science Foundation of China(Grant No.11101454)the Natural Science Foundation of Chongqing CSTC(GrantNo.cstc2011jjA30003)
文摘Combining moving least square approximations and boundary integral equations, a meshless Galerkin method, which is the Galerkin boundary node method (GBNM), for twoand three-dimensional infinite elastic solid mechanics problems with traction boundary conditions is discussed. In this numerical method, the resulting formulation inherits the symmetry and positive definiteness of variational problems, and boundary conditions can be applied directly and easily. A rigorous error analysis and convergence study for both displacement and stress is presented in Sobolev spaces. The capability of this method is illustrated and assessed by some numerical examples.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project,China(Grant No. S30106)the Innovation Fund for Graduate Student of Shanghai University,China (Grant No. SHUCX120125)
文摘In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency.
基金theNationalNaturalScienceFoundationofChina (No .50 40 90 0 8)
文摘Multiresolution analysis of wavelet theory can give an effective way to describe the information at various levels of approximations or different resolutions, based on spline wavelet analysis,so weight function is orthonormally projected onto a sequence of closed spline subspaces, and is viewed at various levels of approximations or different resolutions. Now, the useful new way to research weight function is found, and the numerical result is given.
基金supported by National Natural Science Foundation of China (Grant No. 50905049)Heilongjiang Provincial International Cooperation Project of China (WB06A06)+1 种基金Heilongjiang Provincial Programs for Science and Technology Development of China (GC09A524)Heilongjiang Provincial Postdoctoral Science Foundation of China (LBH-Z09189)
文摘Special transmission 3D model simulation must be based on surface discretization and reconstruction, but special transmission usually has complicated tooth shape and movement, so present software can't provide technical support for special transmission 3D model simulation. Currently, theoretical calculation and experimental method are difficult to exactly solve special transmission contact analysis problem. How to reduce calculation and computer memories consume and meet calculation precision is key to resolve special transmission contact analysis problem. According to 3D model simulation and surface reconstruction of quasi ellipsoid gear is difficulty, this paper employes meshless local Petrov-Galerkin (MLPG) method. In order to reduce calculation and computer memories consume, we disperse tooth mesh into finite points--sparseness points cloud or grid mesh, and then we do interpolation reconstruction in some necessary place of the 3D surface model during analysis. Moving least square method (MLSM) is employed for tooth mesh interpolation reconstruction, there are some advantages to do interpolation by means of MLSM, such as high precision, good flexibility and no require of tooth mesh discretization into units. We input the quasi ellipsoid gear reconstruction model into simulation software, we complete tooth meshing simulation. Simulation transmission ratio during meshing period was obtained, compared with theoretical transmission ratio, the result inosculate preferably. The method using curve reconstruction realizes surface reconstruction, reduce simulation calculation enormously, so special gears simulation can be realized by minitype computer. The method provides a novel solution for special transmission 3D model simulation analysis and contact analysis.
基金Project supported by the Program of the Key Laboratory of Rock and Soil Mechanics of Chinese Academy of Sciences (No.Z110507)
文摘The singular hybrid boundary node method (SHBNM) is proposed for solving three-dimensional problems in linear elasticity. The SHBNM represents a coupling between the hybrid displacement variational formulations and moving least squares (MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the later. The rigid movement method was employed to solve the hyper-singular integrations. The 'boundary layer effect', which is the main drawback of the original Hybrid BNM, was overcome by an adaptive integration scheme. The source points of the fundamental solution were arranged directly on the boundary. Thus the uncertain scale factor taken in the regular hybrid boundary node method (RHBNM) can be avoided. Numerical examples for some 3D elastic problems were given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution. The parameters that influence the performance of this method were studied through the numerical examples.
基金Project supported by the National Natural Science Foundation of China (Nos. 10232040, 10572002 and 10572003)
文摘A new direct method for solving unsymmetrical sparse linear systems(USLS) arising from meshless methods was introduced. Computation of certain meshless methods such as meshless local Petrov-Galerkin (MLPG) method need to solve large USLS. The proposed solution method for unsymmetrical case performs factorization processes symmetrically on the upper and lower triangular portion of matrix, which differs from previous work based on general unsymmetrical process, and attains higher performance. It is shown that the solution algorithm for USLS can be simply derived from the existing approaches for the symmetrical case. The new matrix factorization algorithm in our method can be implemented easily by modifying a standard JKI symmetrical matrix factorization code. Multi-blocked out-of-core strategies were also developed to expand the solution scale. The approach convincingly increases the speed of the solution process, which is demonstrated with the numerical tests.
基金supported by the Direction Général des Enseignements et de la Formation Supérieure of Algeria under Grant CNEPRU number G0301920140029
文摘In this paper, the improved version of the meshless singular boundary method (ISBM) is developed for analyzing the hydrodynamic performance of bottom-standing submerged breakwaters in regular normally incident waves. Both the single and dual prismatic breakwaters of rectangular and trapezoidal forms are examined. Only the impermeable breakwaters are considered in this study. The physical problem is cast in terms of the Laplace equation governing an irrotational flow and incompressible fluid motion with the appropriate mixed-type boundary conditions, and it is solved numerically using the ISBM. The numerical results are presented in terms of the hydrodynamic quantities of reflection and transmission coefficients. The values are first validated against the data of previous studies, computed, and discussed for a variety of structural conditions, including the height, width, and spacing of breakwater submergence. An excellent agreement is observed between the ISBM results and those of other methods. The breakwater width is found to feature marginal effects compared with the height. The present method is shown to accurately predict the resonant conditions at which the maximum reflection and transmission occur. The trapezoidal breakwaters are found to generally present a wide spectrum of reflections, suggesting that they would function better than the rectangular breakwaters. The dual breakwater systems are confirmed to perform much better than single structures.
文摘Numerical quadrature is an important ingredient of Galerkin meshless methods. A new numerical quadrature technique, partition of unity quadrature (PUQ),for Galerkin meshless methods was presented. The technique is based on finite covering and partition of unity. There is no need to decompose the physical domain into small cell. It possesses remarkable integration accuracy. Using Element-free Galerkin methods as example, Galerkin meshless methods based on PUQ were studied in detail. Meshing is always not required in the procedure of constitution of approximate function or numerical quadrature, so Galerkin meshless methods based on PUQ are “truly” meshless methods.
基金Project supported by the National Natural Science Foundation of China (No. 50175060).
文摘An h-adaptive meshless method is proposed in this paper. The error estimation is based on local fit technology, usually confined to Voronoi Cells. The error is achieved by comparison of the computational results with smoothed ones, which are projected with Taylor series. Voronoi Cells are introduced not only for integration of potential energy but also for guidance of refinement. New nodes are placed within those cells with high estimated error. At the end of the paper, two numerical examples with severe stress gradient are analyzed. Through adaptive analysis accurate results are obtained at critical subdomains, which validates the efficiency of the method.
基金Project supported by the National Natural Science Foundation of China (Grant No.10871124)the Natural Science Foundation of Zhejiang Province of China (Grant No.Y6110007)
文摘The element-free Galerkin (EFG) method for numerically solving the compound Korteweg-de Vries-Burgers (KdVB) equation is discussed in this paper. The Galerkin weak form is used to obtain the discrete equation and the essential boundary conditions are enforced by the penalty method. The effectiveness of the EFG method of solving the compound Korteweg-de Vries-Burgers (KdVB) equation is illustrated by three numerical examples.
基金Project supported by the National Natural Science Foundation of China(Nos.59825117 and 50175060).
文摘A meshless method integrated with linear elastic fracture mechanics(LEFM)is presented for 2D mixed-mode crack propagation analysis.The domain is divided automatically into sub-domains based on Voronoi cells,which are used for quadrature for the potential energy. The continuous crack propagation is simulated with an incremental crack-extension method which assumes a piecewise linear discretization of the unknown crack path.For each increment of the crack extension,the meshless method is applied to carry out a stress analysis of the cracked structure.The J-integral,which can be decomposed into mode Ⅰ and mode Ⅱ for mixed-mode crack,is used for the evaluation of the stress intensity factors(SIFs).The crack-propagation direction,predicted on an incremental basis, is computed by a criterion defined in terms of the SIFs. The flowchart of the proposed procedure is presented and two numerical problems are analyzed with this method.The meshless results agree well with the experimental ones,which validates the accuracy and efficiency of the method.