The web of meso-scale meteorological observational station based on WebGIS realized by SVG technology was briefly introduced.Through grasping and applying SVG technology,the high-density automatic observational statio...The web of meso-scale meteorological observational station based on WebGIS realized by SVG technology was briefly introduced.Through grasping and applying SVG technology,the high-density automatic observational station in Anhui Province was developed.The web of meso-scale meteorological observational stations constructed by SVG technique can display the network graphics of weather data and intuitionistic vector graphics interface.展开更多
重构GRAPES(Global/Regional Assimilation and Prediction System)全球、区域一体化变分同化系统中的极小化控制变量,提升中、小尺度同化分析能力,为中国气象局业务区域数值预报系统CMA-MESO提供千米尺度适用的同化方案。新方案用纬向...重构GRAPES(Global/Regional Assimilation and Prediction System)全球、区域一体化变分同化系统中的极小化控制变量,提升中、小尺度同化分析能力,为中国气象局业务区域数值预报系统CMA-MESO提供千米尺度适用的同化方案。新方案用纬向风速(u)和经向风速(v)替代原有流函数和势函数作为新的风场控制变量,采用温度和地面气压(T,ps)替代原有非平衡无量纲气压作为新的质量场控制变量,同时不再考虑准地转平衡约束,而是采用连续方程弱约束保证分析平衡。背景误差参数统计和数值试验结果表明,采用重构后的极小化控制变量,观测信息传播更加局地,分析结构更加合理,避免了原方案在中、小尺度应用时存在的虚假相关问题。连续方程弱约束的引入,限制了同化分析中辐合、辐散的不合理增长,帮助新方案在分析更加局地的同时保证分析平衡。为期1个月的连续同化循环和预报试验结果表明,新方案可以减小风场和质量场分析误差,CMAMESO系统地面降水和10 m风场的预报评分显著提升。展开更多
The impacts of Kuroshio intrusion(KI) optimization on the simulation of meso-scale eddies(MEs) in the northern South China Sea(SCS) were investigated based on an eddy-resolving ocean general circulation model by compa...The impacts of Kuroshio intrusion(KI) optimization on the simulation of meso-scale eddies(MEs) in the northern South China Sea(SCS) were investigated based on an eddy-resolving ocean general circulation model by comparing two numerical experiments with differences in their form and intensity of KI due to the optimizing topography at Luzon Strait(LS). We found that a reduced KI reduces ME activities in the northern SCS, which is similar to the observations. In this case, the biases of the model related to simulating the eddy kinetic energy(EKE) west of the LS and along the northern slope are remarkably attenuated. The reduced EKE modeling bias is associated with both the reduced number of anti-cyclonic eddies(AEs) and the reduced amplitude of cyclonic eddies(CEs). The EKE budget analysis further suggests that the optimization of the KI will change the EKE by changing the horizontal velocity shear and the slope of the thermocline, which are related to barotropic and baroclinic instabilities, respectively. The former plays the key role in regulating the EKE in the northern SCS due to the changing of the KI. The EKE advection caused by the KI is also important for the EKE budget to the west of the LS.展开更多
A meso-scale truss network model was developed to predict chloride diffusion in concrete. The model regards concrete as a three-phase composite of mortar matrix, coarse aggregates, and the interfacial transition zone ...A meso-scale truss network model was developed to predict chloride diffusion in concrete. The model regards concrete as a three-phase composite of mortar matrix, coarse aggregates, and the interfacial transition zone (ITZ) between the mortar matrix and the aggregates. The diffusion coefficient of chloride in the mortar and the ITZ can be analytically determined with only the water-to-cement ratio and volume fraction of fine aggregates. Fick's second law of diffusion was used as the governing equation for chloride diffusion in a homogenous medium (e.g., mortar); it was discretized and applied to the truss network model. The solution procedure of the truss network model based on the diffusion law and the meso-scale composite structure of concrete is outlined. Additionally, the dependence of the diffusion coefficient of chloride in the mortar and the ITZ on exposure duration and temperature is taken into account to illustrate their effect on chloride diffusion coefficient. The numerical results show that the exposure duration and environmental temperature play important roles in the diffusion rate of chloride ions in concrete. It is also concluded that the meso-scale truss network model can be applied to chloride transport analysis of damaged (or cracked) concrete.展开更多
Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant r...Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant role in studying and simulating transport phenomena involving fluid flow and heat and mass transfers, in recent years, other numerical methods for the simulations at meso- and micro-scales have also been actively applied to solve the physics of complex flow and fluid-interface interactions. This paper presents a review of recent advances in multi-scale computational simulation of biomimetics related fluid flow problems. The state-of-the-art numerical techniques, such as lattice Boltzmann method (LBM), molecular dynamics (MD), and conventional CFD, applied to different problems such as fish flow, electro-osmosis effect of earthworm motion, and self-cleaning hydrophobic surface, and the numerical approaches are introduced. The new challenging of modelling biomimetics problems in developing the physical conditions of self-clean hydrophobic surfaces is discussed.展开更多
This paper examines initial meso-scale vortex effects on the motion of a tropical cyclone (TC) in a system where coexisting two components of TC and meso-scale vortices with a barotropic vorticity equation model. Th...This paper examines initial meso-scale vortex effects on the motion of a tropical cyclone (TC) in a system where coexisting two components of TC and meso-scale vortices with a barotropic vorticity equation model. The initial mesoscale vortices are generated stochastically by employing Reinaud's method. The 62 simulations are performed and analysed in order to understand the statistical characteristics of the effects. Results show that the deflection of the TC track at t = 24 h induced by the initial meso-scale vortices ranges from 2 km to 37 km with the mean value of 13.4 km. A more significant deflection of the TC track can be reduced when several initial meso-scale vortices simultaneously appear in a smaller TC circulation area. It ranges from 22 km to 37 km with the mean value of 28 km, this fact implies that the initial meso-scale vortices-induced deflection may not be neglected sometimes.展开更多
The pitfalls of applying the commonly used definition of available gravitational potential energy (AGPE) to the world oceans are re-examined. It is proposed that such definition should apply to the meso-scale proble...The pitfalls of applying the commonly used definition of available gravitational potential energy (AGPE) to the world oceans are re-examined. It is proposed that such definition should apply to the meso-scale problems in the oceans, not the global scale. Based on WOA98 climatological data, the meso-scale AGPE in the world oceans is estimated. Unlike previous results by Oort et al. , the meso-scale AGPE is large wherever there is a strong horizontal density gradient. The distribution of meso-scale AGPE reveals the close connection between the baroclinic instability and the release of gravitational potential energy stored within the scale of Rossby deformation radius.展开更多
By using the rainfall data in the regional automatic station,FY-2E satellite data,NCEP reanalysis data,the evolution features and the structure characteristics of a meso-scale convective system(MCS) which happened on ...By using the rainfall data in the regional automatic station,FY-2E satellite data,NCEP reanalysis data,the evolution features and the structure characteristics of a meso-scale convective system(MCS) which happened on May 6 in 2010 in Loudi City of Hunan Province were analyzed.The results showed that MCS was the important influence system for the generation and development of strong precipitation.The equivalent blackbody brightness temperature(TBB) field of satellite inversion could directly reflect the convective activity of cumulus,the precipitation distribution and the intensity characteristics in the rainstorm process.TBB low value belt had the good corresponding relationship with the rainstorm falling zone.The disturbance flow field and the height field which passed Barnes band-pass wave filtering represented that there existed the obvious high-layer anticyclonic circulation and the low-layer cyclonic circulation near the rainstorm zone.The divergence in the high layer and the convergence in the low layer enhanced the occurrence and development of MCS.In addition,the disturbance temperature field revealed the main source of energy which the occurrence and development of strong convective weather needed.展开更多
A relatively independent and small-scale heavy rainfall event occurred to the south of a slow eastwardmoving meso-α-scale vortex. The analysis shows that a meso-β-scale system is heavily responsible for the intense ...A relatively independent and small-scale heavy rainfall event occurred to the south of a slow eastwardmoving meso-α-scale vortex. The analysis shows that a meso-β-scale system is heavily responsible for the intense precipitation. An attempt to simulate it met with some failures. In view of its small scale, short lifetime and relatively sparse observations at the initial time, an adjoint model was used to examine the sensitivity of the meso-β-scale vortex simulation with respect to initial conditions. The adjoint sensitivity indicates how small perturbations of initial model variables anywhere in the model domain can influence the central vorticity of the vortex. The largest sensitivity for both the wind and temperature perturbation is located below 700 hPa, especially at the low level. The largest sensitivity for the water vapor perturbation is located below 500 hPa, especially at the middle and low levels. The horizontal adjoint sensitivity for all variables is mainly located toward the upper reaches of the Yangtze River with respect to the simulated meso-β-scale system in Hunan and Jiangxi provinces with strong locality. The sensitivity shows that warm cyclonic perturbations in the upper reaches can have a great effect on the development of the meso-β-scale vortex. Based on adjoint sensitivity, forward sensitivity experiments were conducted to identify factors influencing the development of the meso-β-scale vortex and to explore ways of improving the prediction. A realistic prediction was achieved by using adjoint sensitivity to modify the initial conditions and implanting a warm cyclone at the initial time in the upper reaches of the river with respect to the meso-β-scale vortex, as is commonly done in tropical cyclone prediction.展开更多
Meso-scale eddies are important features in the South China Sea(SCS). The eddies with diameters of 50–200 km can greatly impact the transport of heat, momentum, and tracers. A high-resolution wave-tide-circulation ...Meso-scale eddies are important features in the South China Sea(SCS). The eddies with diameters of 50–200 km can greatly impact the transport of heat, momentum, and tracers. A high-resolution wave-tide-circulation coupled model was developed to simulate the meso-scale eddy in the SCS in this study. The aim of this study is to examine the model ability to simulate the meso-scale eddy in the SCS without data assimilations The simulated Sea Surface Height(SSH) anomalies agree with the observed the AVISO SSH anomalies well. The simulated subsurface temperature profiles agree with the CTD observation data from the ROSE(Responses of Marine Hazards to climate change in the Western Pacific) project. The simulated upper-ocean currents also agree with the main circulation based on observations. A warm eddy is identified in winter in the northern SCS. The position and domain of the simulated eddy are confirmed by the observed sea surface height data from the AVISO. The result shows that the model has the ability to simulate the meso-scale eddy in the SCS without data assimilation.The three-dimensional structure of the meso-scale eddy in the SCS is analyzed using the model result. It is found that the eddy center is tilted vertically, which agrees with the observation. It is also found that the velocity center of the eddy does not coincide with the temperature center of the eddy. The result shows that the model has the ability to simulate the meso-scale eddy in the SCS without data assimilations. Further study on the forming mechanism and the three-dimensional structure of the meso-scale eddies will be carried out using the model result and cruise observation data in the near future.展开更多
Recent advances in Global Positioning System (GPS) remote sensing technology allow for a direct estimation of the precipitable water vapor (PWV) from delayed signals transmitted by GPS satellites, which can be ass...Recent advances in Global Positioning System (GPS) remote sensing technology allow for a direct estimation of the precipitable water vapor (PWV) from delayed signals transmitted by GPS satellites, which can be assimilated into numerical models with four-dimensional variational (4DVAR) data assimilation. A mesoscale model and its 4DVAR system are used to access the impacts of assimilating GPS-PWV and hourly rainfall observations on the short-range prediction of a heavy rainfall event on 20 June 2002. The heavy precipitation was induced by a sequence of meso-β-scale convective systems (MCS) along the mei-yu front in China. The experiments with GPS-PWV assimilation cluster and also eliminated the erroneous rainfall successfully simulated the evolution of the observed MCS systems found in the experiment without 4DVAR assimilation. Experiments with hourly rainfall assimilation performed similarly both on the prediction of MCS initiation and the elimination of erroneous systems, however the MCS dissipated much sooner than it did in observations. It is found that the assimilation-induced moisture perturbation and mesoscale low-level jet are helpful for the MCS generation and development. It is also discovered that spurious gravity waves may post serious limitations for the current 4DVAR algorithm, which would degrade the assimilation efficiency, especially for rainfall data. Sensitivity experiments with different observations, assimilation windows and observation weightings suggest that assimilating GPS-PWV can be quite effective, even with the assimilation window as short as 1 h. On the other hand, assimilating rainfall observations requires extreme cautions on the selection of observation weightings and the control of spurious gravity waves.展开更多
On small-meso scale, the sea ice dynamic characteristics are quite different from that on large scale. To model the sea ice dynamics on small-meso scale, a new elastic-viscous-plastic (EVP) constitutive model and a ...On small-meso scale, the sea ice dynamic characteristics are quite different from that on large scale. To model the sea ice dynamics on small-meso scale, a new elastic-viscous-plastic (EVP) constitutive model and a hybrid Lagrangian- Eulerian (HLE) numerical method are developed based on continuum theory. While a modified discrete element model (DEM) is introduced to model the ice cover at discrete state. With the EVP constitutive model, the numerical simulation for ice ridging in an idealized rectangular basin is carried out and the results are comparable with the analytical solution of jam theory. Adopting the HLE numerical model, the sea ice dynamic process is simulated in a vortex wind field. The furthering application of DEM is discussed in details for modeling the discrete distribution of sea ice. With this study, the mechanical and numerical models for sea ice dynamics can be improved with high precision and computational efficiency.展开更多
The catalyst layer (CL) of proton exchange mem-brane fuel cell (PEMFC) involves various particles and pores in meso-scale, which has an important effect on the mass, charge (proton and electron) and heat transpo...The catalyst layer (CL) of proton exchange mem-brane fuel cell (PEMFC) involves various particles and pores in meso-scale, which has an important effect on the mass, charge (proton and electron) and heat transport coupled with the electrochemical reactions. The coarse-grained molecular dynamics (CG-MD) method is employed as a meso-scale structure reconstruction technique to mimic the self-organization phenomena in the fabrication steps of a CL. The meso-scale structure obtained at the equilibrium state is further analyzed by molecular dynamic (MD) software to provide the necessary microscopic parameters for understanding of multi-scale and-physics processes in CLs. The primary pore size distribution (PSD) and active platinum (Pt) surface areas are also calculated and then compared with the experiments. In addition, we also highlight the implementation method to combine microscopic elementary kinetic reaction schemes with the CG-MD approaches to provide insight into the reactions in CLs. The concepts from CG modeling with particle hydrodynamics (SPH) and the problems on coupling of SPH with finite element modeling (FEM) methods are further outlined and discussed to understand the effects of the meso-scale transport phenomena in fuel cells.展开更多
Methods of experimental observations, theoretical analysis and meso-scale modeling were used to study the propagation processes of shock waves in dry and wet sandstone under dynamic impact in this paper.According to t...Methods of experimental observations, theoretical analysis and meso-scale modeling were used to study the propagation processes of shock waves in dry and wet sandstone under dynamic impact in this paper.According to the results from the dynamic impact experiments with velocity of 0.2-0.5 km/s, it was found that the velocity of shock wave increases linearly with water content. Additionally, the velocity of the shock wave in the sandstone showed a linearly increased regularity with the increasement of the impact velocity, which was proved by theory in this paper. Furthermore, meso-scale simulation models were performed and the simulation results showed that sandstone's porosity reduced the shock waves velocity compared to nonporous materials. Pore space filled with water counteracts the effects of porosity, resulted in larger shock wave velocity.展开更多
Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under diff...Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 10^0-10^2μA, the electron density 10^15-10^16 m^-3 and further the power dissipation 〈 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10^-4-10^-3 Ω^-1. m^-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process.展开更多
Heavy rains occur in China frequently, which often bring us floods and serious disasters in the summer half-year. The meso-scale heavy rain parcels (MHRP) in the mid-latitude are usually developed in following cases:I...Heavy rains occur in China frequently, which often bring us floods and serious disasters in the summer half-year. The meso-scale heavy rain parcels (MHRP) in the mid-latitude are usually developed in following cases:I.By the approaching, meeting and / or overlapping of different weather systems, when two or more different rainfall systems are getting to conjugate, some MHRPs could be developed, such as: 1) a new cold/warm front or squall line approaches an old front or squall, even when the old one is somewhat decrepit; 2) at the places where two or more synoptic systems with different characteristics are meeting together, such as the meeting of tropical cyclone with the cold airs coming from the mid- and / or high-latitudes, or the low latitude vortex meeting with the westerly trough; 3) at the intersections of some different weather systems, such as the intersection of drylines, squall lines or fronts moving from different directions; and 4) by the overlapping of rainfall parcels produced continuously from a meso-generation centre.II.Resonance Effect and Tibetan Plateau Influence are two reasons why high frequency of heavy and torrential rains arround the meiyu front is discussed also.展开更多
By using wide scope ADCP data which were got during SCSMEX (South China Sea Monsoon Experiment) period in the summer of 1998, and comparing these data with numerical modelling result, the distribution and variation ch...By using wide scope ADCP data which were got during SCSMEX (South China Sea Monsoon Experiment) period in the summer of 1998, and comparing these data with numerical modelling result, the distribution and variation characteristics of the circulation and meso-scale eddies in the South China Sea (SCS) were studied. The results show that: (1) in the SCS, 18 different scale eddies or motion systems with characteristics similar to meso-scale eddy were found during the investigation; (2) a strong westward current was found in the south of the Taiwan Shoal; (3) the energy of those eddies west of 114°E was much stronger than that of the east;(4) and there exist many powerful meso-scale eddies in the Nansha region south of 12°N. The distributions of numerous eddies reflect the complexity of the circulation in the SCS. It seems that the formation of those eddies should be caused by joint work of wind, coast feature, bottom topography, water density, inertial force and continental shelf waves.展开更多
[Objective] The research aimed to study the meso-scale characteristics of a hail process in Linyi area. [Method] By comprehensively using MICAPS conventional observation data, automatic encryption ground station, MM5 ...[Objective] The research aimed to study the meso-scale characteristics of a hail process in Linyi area. [Method] By comprehensively using MICAPS conventional observation data, automatic encryption ground station, MM5 model product and Doppler weather radar data, a strong convective hail weather process which happened in Shandong Peninsula and southeast of Shandong on May 30, 2010 was analyzed. The circulation background and physical mechanism of strong convection weather occurrence, the features of meso- and micro-scale systems were discussed. Some occurrence and development rules of such weather were found. [Result] The strong convective weather was mainly affected by the cold vortex and translot. The high-altitude northwest airflow, low-level southwest airflow, dry and cold air at the high layer, warm and wet air at the low layer, forward-tilting trough caused the strong convective weather. The radar echo analysis showed that the radar echo in the process belonged to the typical multi-monomer windstorm echo, and the strong echo zone was in the forefront of echo. When the convection development was the strongest, the echo intensity reached 65 dBz, and the echo top height surpassed 11 km. As the development of windstorm monomer, the big-value zone of vertical liquid water content product had the jumping formation and disappearance. Moreover, there was obvious weak echo zone. The windstorm monomer moved to the southeast direction as the precipitation system. In the right front of monomer moving direction, there was hook echo feature. The evolution characteristics of radial speed field at the different elevation angles before and after the hail weather occurrence were analyzed. It was found that the radial speed field had some premonitory variations before the hail weather occurrence. Doppler radar product was used to improve the initial field of MM5 model, which could improve the forecast effect in the certain degree and the accuracy of short-time forecast and nowcasting. [Conclusion] The research accumulated the experience for the short-term forecast and nowcasting work of strong convective weather in future.展开更多
The Chamba\|Bharmaur syncline located in between Zanskar range in the north and Dhauladhar\|Pirpanjal range in the south , in the Chamba district of Western Himachal Pradesh. The rocks constituting Chamba\|Bharmaur sy...The Chamba\|Bharmaur syncline located in between Zanskar range in the north and Dhauladhar\|Pirpanjal range in the south , in the Chamba district of Western Himachal Pradesh. The rocks constituting Chamba\|Bharmaur syncline belong to Precambrian to Lr. Triassic (Rattan, 1973) and represent the southern extension of the Tethyan facies of the Zanskar Tethys Himalayan sequence (Thakur, 1998). The geological and structural mapping in the Chamba\|Bharmaur syncline reveal that the area comprises of various litho\|units which show imprint of various phases of deformation. Three main phases of deformation DF\-1, DF\-2 and DF\-3 have affected the rocks of the Chamba\|Bharmaur syncline. The earliest recognisable deformational structures of the area are tight isoclinal folds appressed with long drawn out limbs and thickened hinges have experienced buckle shortening of 80%. They have been rendered intrafolial folds in many places; only a few of them show disharmony. The folds initiated in the multilayered sequences are generally controlled in their distribution and wave\|length by more competent members of the sequence.展开更多
基金Supported by Anhui Meteorological Observatory Projects " Integration Design of Station Meteorological Observation Operation"
文摘The web of meso-scale meteorological observational station based on WebGIS realized by SVG technology was briefly introduced.Through grasping and applying SVG technology,the high-density automatic observational station in Anhui Province was developed.The web of meso-scale meteorological observational stations constructed by SVG technique can display the network graphics of weather data and intuitionistic vector graphics interface.
基金The National Key R&D Program for Developing Basic Sciences under contract Nos 2016YFC1401401 and 2016YFC1401601the National Natural Science Foundation of China under contract Nos 41576025, 41576026 and 41776030.
文摘The impacts of Kuroshio intrusion(KI) optimization on the simulation of meso-scale eddies(MEs) in the northern South China Sea(SCS) were investigated based on an eddy-resolving ocean general circulation model by comparing two numerical experiments with differences in their form and intensity of KI due to the optimizing topography at Luzon Strait(LS). We found that a reduced KI reduces ME activities in the northern SCS, which is similar to the observations. In this case, the biases of the model related to simulating the eddy kinetic energy(EKE) west of the LS and along the northern slope are remarkably attenuated. The reduced EKE modeling bias is associated with both the reduced number of anti-cyclonic eddies(AEs) and the reduced amplitude of cyclonic eddies(CEs). The EKE budget analysis further suggests that the optimization of the KI will change the EKE by changing the horizontal velocity shear and the slope of the thermocline, which are related to barotropic and baroclinic instabilities, respectively. The former plays the key role in regulating the EKE in the northern SCS due to the changing of the KI. The EKE advection caused by the KI is also important for the EKE budget to the west of the LS.
基金supported by the Key Project of the Chinese Ministry of Education (Grant No. 109046)the Center for Concrete Corea, Korea of the Yonsei University of Korea, the Grant-in-Aid for Scientific Research from the Japanese Government (A) (Grant No. 19206048)
文摘A meso-scale truss network model was developed to predict chloride diffusion in concrete. The model regards concrete as a three-phase composite of mortar matrix, coarse aggregates, and the interfacial transition zone (ITZ) between the mortar matrix and the aggregates. The diffusion coefficient of chloride in the mortar and the ITZ can be analytically determined with only the water-to-cement ratio and volume fraction of fine aggregates. Fick's second law of diffusion was used as the governing equation for chloride diffusion in a homogenous medium (e.g., mortar); it was discretized and applied to the truss network model. The solution procedure of the truss network model based on the diffusion law and the meso-scale composite structure of concrete is outlined. Additionally, the dependence of the diffusion coefficient of chloride in the mortar and the ITZ on exposure duration and temperature is taken into account to illustrate their effect on chloride diffusion coefficient. The numerical results show that the exposure duration and environmental temperature play important roles in the diffusion rate of chloride ions in concrete. It is also concluded that the meso-scale truss network model can be applied to chloride transport analysis of damaged (or cracked) concrete.
文摘Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant role in studying and simulating transport phenomena involving fluid flow and heat and mass transfers, in recent years, other numerical methods for the simulations at meso- and micro-scales have also been actively applied to solve the physics of complex flow and fluid-interface interactions. This paper presents a review of recent advances in multi-scale computational simulation of biomimetics related fluid flow problems. The state-of-the-art numerical techniques, such as lattice Boltzmann method (LBM), molecular dynamics (MD), and conventional CFD, applied to different problems such as fish flow, electro-osmosis effect of earthworm motion, and self-cleaning hydrophobic surface, and the numerical approaches are introduced. The new challenging of modelling biomimetics problems in developing the physical conditions of self-clean hydrophobic surfaces is discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40775038,40875031 and 40975036)the Science Foundation of Wuxi Environment Science and Technology Research Center
文摘This paper examines initial meso-scale vortex effects on the motion of a tropical cyclone (TC) in a system where coexisting two components of TC and meso-scale vortices with a barotropic vorticity equation model. The initial mesoscale vortices are generated stochastically by employing Reinaud's method. The 62 simulations are performed and analysed in order to understand the statistical characteristics of the effects. Results show that the deflection of the TC track at t = 24 h induced by the initial meso-scale vortices ranges from 2 km to 37 km with the mean value of 13.4 km. A more significant deflection of the TC track can be reduced when several initial meso-scale vortices simultaneously appear in a smaller TC circulation area. It ranges from 22 km to 37 km with the mean value of 28 km, this fact implies that the initial meso-scale vortices-induced deflection may not be neglected sometimes.
基金the National Naturale Science Foundation of China under contract No. 40476010 the Research Fund for the Doctoral Program of Higher Education of China under contract No. 20030423011
文摘The pitfalls of applying the commonly used definition of available gravitational potential energy (AGPE) to the world oceans are re-examined. It is proposed that such definition should apply to the meso-scale problems in the oceans, not the global scale. Based on WOA98 climatological data, the meso-scale AGPE in the world oceans is estimated. Unlike previous results by Oort et al. , the meso-scale AGPE is large wherever there is a strong horizontal density gradient. The distribution of meso-scale AGPE reveals the close connection between the baroclinic instability and the release of gravitational potential energy stored within the scale of Rossby deformation radius.
文摘By using the rainfall data in the regional automatic station,FY-2E satellite data,NCEP reanalysis data,the evolution features and the structure characteristics of a meso-scale convective system(MCS) which happened on May 6 in 2010 in Loudi City of Hunan Province were analyzed.The results showed that MCS was the important influence system for the generation and development of strong precipitation.The equivalent blackbody brightness temperature(TBB) field of satellite inversion could directly reflect the convective activity of cumulus,the precipitation distribution and the intensity characteristics in the rainstorm process.TBB low value belt had the good corresponding relationship with the rainstorm falling zone.The disturbance flow field and the height field which passed Barnes band-pass wave filtering represented that there existed the obvious high-layer anticyclonic circulation and the low-layer cyclonic circulation near the rainstorm zone.The divergence in the high layer and the convergence in the low layer enhanced the occurrence and development of MCS.In addition,the disturbance temperature field revealed the main source of energy which the occurrence and development of strong convective weather needed.
基金This work was supported by the National Natural Science Foundation of China under Grant No.40075009 and 40505011.The authors would like to thank the computer center of the College of Science at Zhejiang University for computer support of the 0rigin2K.
文摘A relatively independent and small-scale heavy rainfall event occurred to the south of a slow eastwardmoving meso-α-scale vortex. The analysis shows that a meso-β-scale system is heavily responsible for the intense precipitation. An attempt to simulate it met with some failures. In view of its small scale, short lifetime and relatively sparse observations at the initial time, an adjoint model was used to examine the sensitivity of the meso-β-scale vortex simulation with respect to initial conditions. The adjoint sensitivity indicates how small perturbations of initial model variables anywhere in the model domain can influence the central vorticity of the vortex. The largest sensitivity for both the wind and temperature perturbation is located below 700 hPa, especially at the low level. The largest sensitivity for the water vapor perturbation is located below 500 hPa, especially at the middle and low levels. The horizontal adjoint sensitivity for all variables is mainly located toward the upper reaches of the Yangtze River with respect to the simulated meso-β-scale system in Hunan and Jiangxi provinces with strong locality. The sensitivity shows that warm cyclonic perturbations in the upper reaches can have a great effect on the development of the meso-β-scale vortex. Based on adjoint sensitivity, forward sensitivity experiments were conducted to identify factors influencing the development of the meso-β-scale vortex and to explore ways of improving the prediction. A realistic prediction was achieved by using adjoint sensitivity to modify the initial conditions and implanting a warm cyclone at the initial time in the upper reaches of the river with respect to the meso-β-scale vortex, as is commonly done in tropical cyclone prediction.
基金The National Basic Research Program(973 Program) of China under contract No.2014CB745004China-Korea Cooperation Project on the development of oceanic monitoring and prediction system on nuclear safety+2 种基金the National Natural Science Foundation of China under contract No.41206025NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406404supported by China-Korea Joint Ocean Research Center
文摘Meso-scale eddies are important features in the South China Sea(SCS). The eddies with diameters of 50–200 km can greatly impact the transport of heat, momentum, and tracers. A high-resolution wave-tide-circulation coupled model was developed to simulate the meso-scale eddy in the SCS in this study. The aim of this study is to examine the model ability to simulate the meso-scale eddy in the SCS without data assimilations The simulated Sea Surface Height(SSH) anomalies agree with the observed the AVISO SSH anomalies well. The simulated subsurface temperature profiles agree with the CTD observation data from the ROSE(Responses of Marine Hazards to climate change in the Western Pacific) project. The simulated upper-ocean currents also agree with the main circulation based on observations. A warm eddy is identified in winter in the northern SCS. The position and domain of the simulated eddy are confirmed by the observed sea surface height data from the AVISO. The result shows that the model has the ability to simulate the meso-scale eddy in the SCS without data assimilation.The three-dimensional structure of the meso-scale eddy in the SCS is analyzed using the model result. It is found that the eddy center is tilted vertically, which agrees with the observation. It is also found that the velocity center of the eddy does not coincide with the temperature center of the eddy. The result shows that the model has the ability to simulate the meso-scale eddy in the SCS without data assimilations. Further study on the forming mechanism and the three-dimensional structure of the meso-scale eddies will be carried out using the model result and cruise observation data in the near future.
文摘Recent advances in Global Positioning System (GPS) remote sensing technology allow for a direct estimation of the precipitable water vapor (PWV) from delayed signals transmitted by GPS satellites, which can be assimilated into numerical models with four-dimensional variational (4DVAR) data assimilation. A mesoscale model and its 4DVAR system are used to access the impacts of assimilating GPS-PWV and hourly rainfall observations on the short-range prediction of a heavy rainfall event on 20 June 2002. The heavy precipitation was induced by a sequence of meso-β-scale convective systems (MCS) along the mei-yu front in China. The experiments with GPS-PWV assimilation cluster and also eliminated the erroneous rainfall successfully simulated the evolution of the observed MCS systems found in the experiment without 4DVAR assimilation. Experiments with hourly rainfall assimilation performed similarly both on the prediction of MCS initiation and the elimination of erroneous systems, however the MCS dissipated much sooner than it did in observations. It is found that the assimilation-induced moisture perturbation and mesoscale low-level jet are helpful for the MCS generation and development. It is also discovered that spurious gravity waves may post serious limitations for the current 4DVAR algorithm, which would degrade the assimilation efficiency, especially for rainfall data. Sensitivity experiments with different observations, assimilation windows and observation weightings suggest that assimilating GPS-PWV can be quite effective, even with the assimilation window as short as 1 h. On the other hand, assimilating rainfall observations requires extreme cautions on the selection of observation weightings and the control of spurious gravity waves.
基金supported by the National Natural Science Foundation of China(Grant No.40206004)partly by the open foundation of Key Laboratory of Polar Science of Science of the State Oceanic Administration,China(Grant No.KP2007004).
文摘On small-meso scale, the sea ice dynamic characteristics are quite different from that on large scale. To model the sea ice dynamics on small-meso scale, a new elastic-viscous-plastic (EVP) constitutive model and a hybrid Lagrangian- Eulerian (HLE) numerical method are developed based on continuum theory. While a modified discrete element model (DEM) is introduced to model the ice cover at discrete state. With the EVP constitutive model, the numerical simulation for ice ridging in an idealized rectangular basin is carried out and the results are comparable with the analytical solution of jam theory. Adopting the HLE numerical model, the sea ice dynamic process is simulated in a vortex wind field. The furthering application of DEM is discussed in details for modeling the discrete distribution of sea ice. With this study, the mechanical and numerical models for sea ice dynamics can be improved with high precision and computational efficiency.
文摘The catalyst layer (CL) of proton exchange mem-brane fuel cell (PEMFC) involves various particles and pores in meso-scale, which has an important effect on the mass, charge (proton and electron) and heat transport coupled with the electrochemical reactions. The coarse-grained molecular dynamics (CG-MD) method is employed as a meso-scale structure reconstruction technique to mimic the self-organization phenomena in the fabrication steps of a CL. The meso-scale structure obtained at the equilibrium state is further analyzed by molecular dynamic (MD) software to provide the necessary microscopic parameters for understanding of multi-scale and-physics processes in CLs. The primary pore size distribution (PSD) and active platinum (Pt) surface areas are also calculated and then compared with the experiments. In addition, we also highlight the implementation method to combine microscopic elementary kinetic reaction schemes with the CG-MD approaches to provide insight into the reactions in CLs. The concepts from CG modeling with particle hydrodynamics (SPH) and the problems on coupling of SPH with finite element modeling (FEM) methods are further outlined and discussed to understand the effects of the meso-scale transport phenomena in fuel cells.
基金Supported by NSAF (Grant No. U1730101)the National Program for Support of Top-notch Young Professionals of China (2014)+1 种基金the Funding of Science and Technology on Transient Impact Laboratory(Grant No. 61426060101162606001)the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX18_0460)
文摘Methods of experimental observations, theoretical analysis and meso-scale modeling were used to study the propagation processes of shock waves in dry and wet sandstone under dynamic impact in this paper.According to the results from the dynamic impact experiments with velocity of 0.2-0.5 km/s, it was found that the velocity of shock wave increases linearly with water content. Additionally, the velocity of the shock wave in the sandstone showed a linearly increased regularity with the increasement of the impact velocity, which was proved by theory in this paper. Furthermore, meso-scale simulation models were performed and the simulation results showed that sandstone's porosity reduced the shock waves velocity compared to nonporous materials. Pore space filled with water counteracts the effects of porosity, resulted in larger shock wave velocity.
基金supported by National Natural Science Foundation of China(No.51376021)the Fundamental Research Fund for Major Universities(No.2013JBM079)
文摘Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 10^0-10^2μA, the electron density 10^15-10^16 m^-3 and further the power dissipation 〈 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10^-4-10^-3 Ω^-1. m^-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process.
文摘Heavy rains occur in China frequently, which often bring us floods and serious disasters in the summer half-year. The meso-scale heavy rain parcels (MHRP) in the mid-latitude are usually developed in following cases:I.By the approaching, meeting and / or overlapping of different weather systems, when two or more different rainfall systems are getting to conjugate, some MHRPs could be developed, such as: 1) a new cold/warm front or squall line approaches an old front or squall, even when the old one is somewhat decrepit; 2) at the places where two or more synoptic systems with different characteristics are meeting together, such as the meeting of tropical cyclone with the cold airs coming from the mid- and / or high-latitudes, or the low latitude vortex meeting with the westerly trough; 3) at the intersections of some different weather systems, such as the intersection of drylines, squall lines or fronts moving from different directions; and 4) by the overlapping of rainfall parcels produced continuously from a meso-generation centre.II.Resonance Effect and Tibetan Plateau Influence are two reasons why high frequency of heavy and torrential rains arround the meiyu front is discussed also.
文摘By using wide scope ADCP data which were got during SCSMEX (South China Sea Monsoon Experiment) period in the summer of 1998, and comparing these data with numerical modelling result, the distribution and variation characteristics of the circulation and meso-scale eddies in the South China Sea (SCS) were studied. The results show that: (1) in the SCS, 18 different scale eddies or motion systems with characteristics similar to meso-scale eddy were found during the investigation; (2) a strong westward current was found in the south of the Taiwan Shoal; (3) the energy of those eddies west of 114°E was much stronger than that of the east;(4) and there exist many powerful meso-scale eddies in the Nansha region south of 12°N. The distributions of numerous eddies reflect the complexity of the circulation in the SCS. It seems that the formation of those eddies should be caused by joint work of wind, coast feature, bottom topography, water density, inertial force and continental shelf waves.
文摘[Objective] The research aimed to study the meso-scale characteristics of a hail process in Linyi area. [Method] By comprehensively using MICAPS conventional observation data, automatic encryption ground station, MM5 model product and Doppler weather radar data, a strong convective hail weather process which happened in Shandong Peninsula and southeast of Shandong on May 30, 2010 was analyzed. The circulation background and physical mechanism of strong convection weather occurrence, the features of meso- and micro-scale systems were discussed. Some occurrence and development rules of such weather were found. [Result] The strong convective weather was mainly affected by the cold vortex and translot. The high-altitude northwest airflow, low-level southwest airflow, dry and cold air at the high layer, warm and wet air at the low layer, forward-tilting trough caused the strong convective weather. The radar echo analysis showed that the radar echo in the process belonged to the typical multi-monomer windstorm echo, and the strong echo zone was in the forefront of echo. When the convection development was the strongest, the echo intensity reached 65 dBz, and the echo top height surpassed 11 km. As the development of windstorm monomer, the big-value zone of vertical liquid water content product had the jumping formation and disappearance. Moreover, there was obvious weak echo zone. The windstorm monomer moved to the southeast direction as the precipitation system. In the right front of monomer moving direction, there was hook echo feature. The evolution characteristics of radial speed field at the different elevation angles before and after the hail weather occurrence were analyzed. It was found that the radial speed field had some premonitory variations before the hail weather occurrence. Doppler radar product was used to improve the initial field of MM5 model, which could improve the forecast effect in the certain degree and the accuracy of short-time forecast and nowcasting. [Conclusion] The research accumulated the experience for the short-term forecast and nowcasting work of strong convective weather in future.
文摘The Chamba\|Bharmaur syncline located in between Zanskar range in the north and Dhauladhar\|Pirpanjal range in the south , in the Chamba district of Western Himachal Pradesh. The rocks constituting Chamba\|Bharmaur syncline belong to Precambrian to Lr. Triassic (Rattan, 1973) and represent the southern extension of the Tethyan facies of the Zanskar Tethys Himalayan sequence (Thakur, 1998). The geological and structural mapping in the Chamba\|Bharmaur syncline reveal that the area comprises of various litho\|units which show imprint of various phases of deformation. Three main phases of deformation DF\-1, DF\-2 and DF\-3 have affected the rocks of the Chamba\|Bharmaur syncline. The earliest recognisable deformational structures of the area are tight isoclinal folds appressed with long drawn out limbs and thickened hinges have experienced buckle shortening of 80%. They have been rendered intrafolial folds in many places; only a few of them show disharmony. The folds initiated in the multilayered sequences are generally controlled in their distribution and wave\|length by more competent members of the sequence.