On small-meso scale, the sea ice dynamic characteristics are quite different from that on large scale. To model the sea ice dynamics on small-meso scale, a new elastic-viscous-plastic (EVP) constitutive model and a ...On small-meso scale, the sea ice dynamic characteristics are quite different from that on large scale. To model the sea ice dynamics on small-meso scale, a new elastic-viscous-plastic (EVP) constitutive model and a hybrid Lagrangian- Eulerian (HLE) numerical method are developed based on continuum theory. While a modified discrete element model (DEM) is introduced to model the ice cover at discrete state. With the EVP constitutive model, the numerical simulation for ice ridging in an idealized rectangular basin is carried out and the results are comparable with the analytical solution of jam theory. Adopting the HLE numerical model, the sea ice dynamic process is simulated in a vortex wind field. The furthering application of DEM is discussed in details for modeling the discrete distribution of sea ice. With this study, the mechanical and numerical models for sea ice dynamics can be improved with high precision and computational efficiency.展开更多
Scale effect of ISWs loads on Floating Production Storage and Offloading(FPSO) is studied in this paper. The application conditions of KdV, eKdV and MCC ISWs theories are used in the numerical method. The depthaverage...Scale effect of ISWs loads on Floating Production Storage and Offloading(FPSO) is studied in this paper. The application conditions of KdV, eKdV and MCC ISWs theories are used in the numerical method. The depthaveraged velocities induced by ISWs are used for the velocity-inlet boundary. Three scale ratio numerical models λ=1, 20 and 300 were selected, which the scale ratio is the size ratio of numerical models to the experimental model.The comparisons between the numerical and former experimental results are performed to verify the feasibility of numerical method. The comparisons between the numerical and simplified theoretical results are performed to discuss the applicability of the simplified theoretical model summarized from the load experiments. Firstly, the numerical results of λ=1 numerical model showed a good agreement with former experimental and simplified theoretical results. It is feasible to simulate the ISWs loads on FPSO by the numerical method. Secondly, the comparisons between the results of three scale ratio numerical models and experimental results indicated that the scale ratios have more significant influence on the experimental horizontal forces than the vertical forces. The scale effect of horizontal forces mainly results from the different viscosity effects associated with the model’s dimension.Finally, through the comparisons between the numerical and simplified theoretical results for three scale ratio models, the simplified theoretical model of the pressure difference and friction forces exerted by ISWs on FPSO is applied for large-scale or full-scale FPSO.展开更多
Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model ...Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model with parameterized microphysics. It is found that the predicted meso-r-scale convective phenomena arc basically unsteady under the situation of strong shear at low-levels, while the meso-β-scale convective system is maintained up to 3 hours or more. The meso -β- scale cloud system exhibits characteristics of a multi-celled convective storm in which the meso-r-scale convective cells have lifetime of about 30 min. Pressure perturbation depicts a meso-low after a half hour in the low levels. As the cloud system evolves, the meso-low intensifies and extends to the upshear side and covers the entire domain in the mid-lower levels with the peak values of 5-8 hPa. Temperature perturbation depicts a warm region in the middle levels through the entire simulation period. The meso-r-scale warm cores with peak values of 4-8 ℃ are associated with strong convective cells. The cloud top evaporation causes a stronger cold layer around the cloud top levels.Simulation of microphysics exhibits that graupel is primarily concentrated in the strong convective cells forming the main source of convective rainfall after one hour of simulation time. Aggregates are mainly located in the stratiform region and decaying convective cells which produce the stratiform rainfall. Riming of the ice crystals is the predominant precipitation formation mechanism in the convection region, whereas aggregation of ice crystals is the predominant one in the stratiform region, which is consistent with observations. Sensitivity experiments of ice-phase mierophysical processes show that the microphysical structures of the convective cloud system can be simulated better with the diagnosed aggregation collection efficiencies.展开更多
Previous failure analyses of bridges typically focus on substructure failure or superstructure failure separately. However, in an actual bridge, the seismic induced substructure failure and superstructure failure may ...Previous failure analyses of bridges typically focus on substructure failure or superstructure failure separately. However, in an actual bridge, the seismic induced substructure failure and superstructure failure may influence each other. Moreover, previous studies typically use simplified models to analyze the bridge failure; however, there are inherent defects in the calculation accuracy compared with using a detailed three-dimensional (3D) finite element (FE) model. Conversely, a detailed 3D FE model requires more computational costs, and a proper erosion criterion of the 3D elements is necessary. In this paper, a multi-scale FE model, including a corresponding erosion criterion, is proposed and validated that can significantly reduce computational costs with high precision by modelling a pseudo-dynamic test of an reinforced concrete (RC) pier. Numerical simulations of the seismic failures of a continuous RC bridge based on the multi-scale FE modeling method using LS-DYNA are performed. The nonlinear properties of the bridge, various connection strengths and bidirectional excitations are considered. The numerical results demonstrate that the failure of the connections will induce large pounding responses of the girders. The nonlinear deformation of the piers will aggravate the pounding damages. Furthermore, bidirectional earthquakes will induce eccentric poundingsto the girders and different failure modes to the adjacent piers.展开更多
A meso-scale truss network model was developed to predict chloride diffusion in concrete. The model regards concrete as a three-phase composite of mortar matrix, coarse aggregates, and the interfacial transition zone ...A meso-scale truss network model was developed to predict chloride diffusion in concrete. The model regards concrete as a three-phase composite of mortar matrix, coarse aggregates, and the interfacial transition zone (ITZ) between the mortar matrix and the aggregates. The diffusion coefficient of chloride in the mortar and the ITZ can be analytically determined with only the water-to-cement ratio and volume fraction of fine aggregates. Fick's second law of diffusion was used as the governing equation for chloride diffusion in a homogenous medium (e.g., mortar); it was discretized and applied to the truss network model. The solution procedure of the truss network model based on the diffusion law and the meso-scale composite structure of concrete is outlined. Additionally, the dependence of the diffusion coefficient of chloride in the mortar and the ITZ on exposure duration and temperature is taken into account to illustrate their effect on chloride diffusion coefficient. The numerical results show that the exposure duration and environmental temperature play important roles in the diffusion rate of chloride ions in concrete. It is also concluded that the meso-scale truss network model can be applied to chloride transport analysis of damaged (or cracked) concrete.展开更多
Meso-scale eddies are important features in the South China Sea(SCS). The eddies with diameters of 50–200 km can greatly impact the transport of heat, momentum, and tracers. A high-resolution wave-tide-circulation ...Meso-scale eddies are important features in the South China Sea(SCS). The eddies with diameters of 50–200 km can greatly impact the transport of heat, momentum, and tracers. A high-resolution wave-tide-circulation coupled model was developed to simulate the meso-scale eddy in the SCS in this study. The aim of this study is to examine the model ability to simulate the meso-scale eddy in the SCS without data assimilations The simulated Sea Surface Height(SSH) anomalies agree with the observed the AVISO SSH anomalies well. The simulated subsurface temperature profiles agree with the CTD observation data from the ROSE(Responses of Marine Hazards to climate change in the Western Pacific) project. The simulated upper-ocean currents also agree with the main circulation based on observations. A warm eddy is identified in winter in the northern SCS. The position and domain of the simulated eddy are confirmed by the observed sea surface height data from the AVISO. The result shows that the model has the ability to simulate the meso-scale eddy in the SCS without data assimilation.The three-dimensional structure of the meso-scale eddy in the SCS is analyzed using the model result. It is found that the eddy center is tilted vertically, which agrees with the observation. It is also found that the velocity center of the eddy does not coincide with the temperature center of the eddy. The result shows that the model has the ability to simulate the meso-scale eddy in the SCS without data assimilations. Further study on the forming mechanism and the three-dimensional structure of the meso-scale eddies will be carried out using the model result and cruise observation data in the near future.展开更多
Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the at...Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the attachable nano-scale structures. However, the efficiency of artificial nano-scale structures is not reliable sufficiently. Moreover, the mechanical parameters related to the nano-hair attachment are not yet revealed qualitatively. The mechanical parameters which have influence on the ability of adhesive nano-hairs were investigated through numerical simulation in which only van der Waals force was considered. For the numerical analysis, finite element method was utilized and van der Waals force, assumed as 12-6 Lennard-Jones potential, was implemented as the body force term in the finite element formulation.展开更多
Cloud micro-physical structures in a precipitation system associated with the Meiyu front are observed using the balloon-borne Precipitation Particle Image Sensor at Baoshan observatory station, Shanghai during June a...Cloud micro-physical structures in a precipitation system associated with the Meiyu front are observed using the balloon-borne Precipitation Particle Image Sensor at Baoshan observatory station, Shanghai during June and July 1999. The vertical distributions of various cloud particle size, number density, and mass density are retrieved from the observations. Analyses of observations show that ice-phase particles (ice crystals, graupel, snowflakes, and frozen drops) often exist in the cloud of torrential rain associated with the Meiyu front. Among the various particles, ice crystals and graupel are the most numerous, but graupel and snow have the highest mass density. Ice-phase particles coexist with liquid water droplets near the 0°C level. The graupel is similarly distributed with height as the ice crystals. Raindrops below the 0°C level are mainly from melted grauple, snowflakes and frozen drops. They may further grow larger by coalescence with smaller ones as they fall from the cloud base. Numerical simulations using the non-hydrostatic meso-scale model MM5 with the Reisner graupel explicit moisture scheme confirm the main observational results. Rain water at the lower level is mainly generated from the melting of snow and graupel falling from the upper level where snow and graupel are generated and grown from collection with cloud and rain water. Thus the mixed-phase cloud process, in which ice phase coexists and interacts with liquid phase (cloud and rain drops), plays the most important role in the formation and development of heavy convective rainfall in the Meiyu frontal system.展开更多
A multi-scale continuous-discrete model based on the effects of the p27 gene control is built to simulate the avascular tumor growth. At the tissue level, the continuous Eulerian model is adopted to determine the dist...A multi-scale continuous-discrete model based on the effects of the p27 gene control is built to simulate the avascular tumor growth. At the tissue level, the continuous Eulerian model is adopted to determine the distribution of the concentration of oxygen, the extracellular matrix (ECM), and the matrix-degradative enzyme (MDE). At the cellular level, the discrete Lagrangien model is adopted to determine the movement, the proliferation, and the death of single tumor cells (TCs). At the genetic level, whether a cell is committed to mitosis is determined by solving a set of equations modeling the effects of the p27 gene control. The avascular morphological evolution of the solid tumor growth is simulated, including the radius the oxygen distribution over time, and the expression. of the solid tumor, the number of the TCs, inhibiting effect' of the up-regulating p27 gene展开更多
Long-span bridges are special structures that require advanced analysis techniques to examine their performance. This paper presents a procedure developed to model the Confederation Bridge using 3-D beam elements. The...Long-span bridges are special structures that require advanced analysis techniques to examine their performance. This paper presents a procedure developed to model the Confederation Bridge using 3-D beam elements. The model was validated using the data collected before the opening of the bridge to the public. The bridge was instrumented to conduct fullscale static and dynamic tests. The static tests were to measure the deflection of the bridge pier while the dynamic tests to measure the free vibrations of the pier due to a sudden release of the static load. Confederation Bridge is one of the longest reinforced concrete bridges in the world. It connects the province of Prince Edward Island and the province of New Brunswick in Canada. Due to its strategic location and vital role as a transportation link between these two provinces, it was designed using higher safety factors than those for typical highway bridges. After validating the present numerical model, a procedure was developed to evaluate the performance of similar bridges subjected to traffic and seismic loads. It is of interest to note that the foundation stiffness and the modulus of elasticity of the concrete have significant effects on the structural responses of the Confederation Bridge.展开更多
The purpose of these investigations is to find the numerical outcomes of the fractional kind of biological system based on Leptospirosis by exploiting the strength of artificial neural networks aided by scale conjugat...The purpose of these investigations is to find the numerical outcomes of the fractional kind of biological system based on Leptospirosis by exploiting the strength of artificial neural networks aided by scale conjugate gradient,called ANNs-SCG.The fractional derivatives have been applied to get more reliable performances of the system.The mathematical form of the biological Leptospirosis system is divided into five categories,and the numerical performances of each model class will be provided by using the ANNs-SCG.The exactness of the ANNs-SCG is performed using the comparison of the reference and obtained results.The reference solutions have been obtained by using theAdams numerical scheme.For these investigations,the data selection is performed at 82%for training,while the statics for both testing and authentication is selected as 9%.The procedures based on the recurrence,mean square error,error histograms,regression,state transitions,and correlation will be accomplished to validate the fitness,accuracy,and reliability of the ANNs-SCG scheme.展开更多
利用加密自动气象观测站资料、ERA5再分析资料和欧洲中心ECMWF(European Centre for Medium-Range Weather Forecasts)模式、中国气象局CMA-MESO(China Meteorological Administration Mesoscale Model)模式产品,对2020年7月17—18日江...利用加密自动气象观测站资料、ERA5再分析资料和欧洲中心ECMWF(European Centre for Medium-Range Weather Forecasts)模式、中国气象局CMA-MESO(China Meteorological Administration Mesoscale Model)模式产品,对2020年7月17—18日江淮地区一次特大暴雨过程的预报效果进行检验与分析,并对数值模式降水预报出现偏差的可能原因进行了讨论。结果表明:低涡切变和低层急流的共同影响,为强降水提供了充沛的水汽和有利的动力条件。高空干冷空气叠加在低层暖区之上形成的位势不稳定层结和垂直风切变为强降水的发生提供了不稳定条件。17日20时—19日08时CMA-MESO模式逐12 h暴雨、大暴雨以及暴雨以上量级降水的TS评分均优于ECMWF模式,但2种模式对18日08—20时暖区降水的预报结果均较差。CMA-MESO模式预报的降水区域和实况区域重叠面积的比例均显著高于ECMWF模式,预报形态也与实况更为接近。模式对冷空气强度预报偏弱造成了冷切辐合偏北,对中层湿舌的位置预报偏北,水汽强度预报偏弱,与强降水落区预报偏北相对应,可能是降水预报出现明显偏差的原因。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.40206004)partly by the open foundation of Key Laboratory of Polar Science of Science of the State Oceanic Administration,China(Grant No.KP2007004).
文摘On small-meso scale, the sea ice dynamic characteristics are quite different from that on large scale. To model the sea ice dynamics on small-meso scale, a new elastic-viscous-plastic (EVP) constitutive model and a hybrid Lagrangian- Eulerian (HLE) numerical method are developed based on continuum theory. While a modified discrete element model (DEM) is introduced to model the ice cover at discrete state. With the EVP constitutive model, the numerical simulation for ice ridging in an idealized rectangular basin is carried out and the results are comparable with the analytical solution of jam theory. Adopting the HLE numerical model, the sea ice dynamic process is simulated in a vortex wind field. The furthering application of DEM is discussed in details for modeling the discrete distribution of sea ice. With this study, the mechanical and numerical models for sea ice dynamics can be improved with high precision and computational efficiency.
基金financially supported by the National Natural Science Foundation of China(Grant No.11372184)the National Basic Research Program of China(973 Program,Grant Nos.2015CB251203-3 and 2013CB036103)
文摘Scale effect of ISWs loads on Floating Production Storage and Offloading(FPSO) is studied in this paper. The application conditions of KdV, eKdV and MCC ISWs theories are used in the numerical method. The depthaveraged velocities induced by ISWs are used for the velocity-inlet boundary. Three scale ratio numerical models λ=1, 20 and 300 were selected, which the scale ratio is the size ratio of numerical models to the experimental model.The comparisons between the numerical and former experimental results are performed to verify the feasibility of numerical method. The comparisons between the numerical and simplified theoretical results are performed to discuss the applicability of the simplified theoretical model summarized from the load experiments. Firstly, the numerical results of λ=1 numerical model showed a good agreement with former experimental and simplified theoretical results. It is feasible to simulate the ISWs loads on FPSO by the numerical method. Secondly, the comparisons between the results of three scale ratio numerical models and experimental results indicated that the scale ratios have more significant influence on the experimental horizontal forces than the vertical forces. The scale effect of horizontal forces mainly results from the different viscosity effects associated with the model’s dimension.Finally, through the comparisons between the numerical and simplified theoretical results for three scale ratio models, the simplified theoretical model of the pressure difference and friction forces exerted by ISWs on FPSO is applied for large-scale or full-scale FPSO.
文摘Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model with parameterized microphysics. It is found that the predicted meso-r-scale convective phenomena arc basically unsteady under the situation of strong shear at low-levels, while the meso-β-scale convective system is maintained up to 3 hours or more. The meso -β- scale cloud system exhibits characteristics of a multi-celled convective storm in which the meso-r-scale convective cells have lifetime of about 30 min. Pressure perturbation depicts a meso-low after a half hour in the low levels. As the cloud system evolves, the meso-low intensifies and extends to the upshear side and covers the entire domain in the mid-lower levels with the peak values of 5-8 hPa. Temperature perturbation depicts a warm region in the middle levels through the entire simulation period. The meso-r-scale warm cores with peak values of 4-8 ℃ are associated with strong convective cells. The cloud top evaporation causes a stronger cold layer around the cloud top levels.Simulation of microphysics exhibits that graupel is primarily concentrated in the strong convective cells forming the main source of convective rainfall after one hour of simulation time. Aggregates are mainly located in the stratiform region and decaying convective cells which produce the stratiform rainfall. Riming of the ice crystals is the predominant precipitation formation mechanism in the convection region, whereas aggregation of ice crystals is the predominant one in the stratiform region, which is consistent with observations. Sensitivity experiments of ice-phase mierophysical processes show that the microphysical structures of the convective cloud system can be simulated better with the diagnosed aggregation collection efficiencies.
基金National Program on Key Basic Research Project of China(973) under Grant No.2011CB013603the National Natural Science Foundation of China under Grant Nos.51427901,91315301 and 51408410the Natural Science Foundation of Tianjin,China under Grant No.15JCQNJC07200
文摘Previous failure analyses of bridges typically focus on substructure failure or superstructure failure separately. However, in an actual bridge, the seismic induced substructure failure and superstructure failure may influence each other. Moreover, previous studies typically use simplified models to analyze the bridge failure; however, there are inherent defects in the calculation accuracy compared with using a detailed three-dimensional (3D) finite element (FE) model. Conversely, a detailed 3D FE model requires more computational costs, and a proper erosion criterion of the 3D elements is necessary. In this paper, a multi-scale FE model, including a corresponding erosion criterion, is proposed and validated that can significantly reduce computational costs with high precision by modelling a pseudo-dynamic test of an reinforced concrete (RC) pier. Numerical simulations of the seismic failures of a continuous RC bridge based on the multi-scale FE modeling method using LS-DYNA are performed. The nonlinear properties of the bridge, various connection strengths and bidirectional excitations are considered. The numerical results demonstrate that the failure of the connections will induce large pounding responses of the girders. The nonlinear deformation of the piers will aggravate the pounding damages. Furthermore, bidirectional earthquakes will induce eccentric poundingsto the girders and different failure modes to the adjacent piers.
基金supported by the Key Project of the Chinese Ministry of Education (Grant No. 109046)the Center for Concrete Corea, Korea of the Yonsei University of Korea, the Grant-in-Aid for Scientific Research from the Japanese Government (A) (Grant No. 19206048)
文摘A meso-scale truss network model was developed to predict chloride diffusion in concrete. The model regards concrete as a three-phase composite of mortar matrix, coarse aggregates, and the interfacial transition zone (ITZ) between the mortar matrix and the aggregates. The diffusion coefficient of chloride in the mortar and the ITZ can be analytically determined with only the water-to-cement ratio and volume fraction of fine aggregates. Fick's second law of diffusion was used as the governing equation for chloride diffusion in a homogenous medium (e.g., mortar); it was discretized and applied to the truss network model. The solution procedure of the truss network model based on the diffusion law and the meso-scale composite structure of concrete is outlined. Additionally, the dependence of the diffusion coefficient of chloride in the mortar and the ITZ on exposure duration and temperature is taken into account to illustrate their effect on chloride diffusion coefficient. The numerical results show that the exposure duration and environmental temperature play important roles in the diffusion rate of chloride ions in concrete. It is also concluded that the meso-scale truss network model can be applied to chloride transport analysis of damaged (or cracked) concrete.
基金The National Basic Research Program(973 Program) of China under contract No.2014CB745004China-Korea Cooperation Project on the development of oceanic monitoring and prediction system on nuclear safety+2 种基金the National Natural Science Foundation of China under contract No.41206025NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406404supported by China-Korea Joint Ocean Research Center
文摘Meso-scale eddies are important features in the South China Sea(SCS). The eddies with diameters of 50–200 km can greatly impact the transport of heat, momentum, and tracers. A high-resolution wave-tide-circulation coupled model was developed to simulate the meso-scale eddy in the SCS in this study. The aim of this study is to examine the model ability to simulate the meso-scale eddy in the SCS without data assimilations The simulated Sea Surface Height(SSH) anomalies agree with the observed the AVISO SSH anomalies well. The simulated subsurface temperature profiles agree with the CTD observation data from the ROSE(Responses of Marine Hazards to climate change in the Western Pacific) project. The simulated upper-ocean currents also agree with the main circulation based on observations. A warm eddy is identified in winter in the northern SCS. The position and domain of the simulated eddy are confirmed by the observed sea surface height data from the AVISO. The result shows that the model has the ability to simulate the meso-scale eddy in the SCS without data assimilation.The three-dimensional structure of the meso-scale eddy in the SCS is analyzed using the model result. It is found that the eddy center is tilted vertically, which agrees with the observation. It is also found that the velocity center of the eddy does not coincide with the temperature center of the eddy. The result shows that the model has the ability to simulate the meso-scale eddy in the SCS without data assimilations. Further study on the forming mechanism and the three-dimensional structure of the meso-scale eddies will be carried out using the model result and cruise observation data in the near future.
文摘Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the attachable nano-scale structures. However, the efficiency of artificial nano-scale structures is not reliable sufficiently. Moreover, the mechanical parameters related to the nano-hair attachment are not yet revealed qualitatively. The mechanical parameters which have influence on the ability of adhesive nano-hairs were investigated through numerical simulation in which only van der Waals force was considered. For the numerical analysis, finite element method was utilized and van der Waals force, assumed as 12-6 Lennard-Jones potential, was implemented as the body force term in the finite element formulation.
基金This study was supported by the State Key Basic Program:Research on the Formation Mechanism and Prediction Theory of Severe Synoptic Dis- asters in China No.G1998040907 and the National NaturalSciences Foundation of China under Grant No.49735180
文摘Cloud micro-physical structures in a precipitation system associated with the Meiyu front are observed using the balloon-borne Precipitation Particle Image Sensor at Baoshan observatory station, Shanghai during June and July 1999. The vertical distributions of various cloud particle size, number density, and mass density are retrieved from the observations. Analyses of observations show that ice-phase particles (ice crystals, graupel, snowflakes, and frozen drops) often exist in the cloud of torrential rain associated with the Meiyu front. Among the various particles, ice crystals and graupel are the most numerous, but graupel and snow have the highest mass density. Ice-phase particles coexist with liquid water droplets near the 0°C level. The graupel is similarly distributed with height as the ice crystals. Raindrops below the 0°C level are mainly from melted grauple, snowflakes and frozen drops. They may further grow larger by coalescence with smaller ones as they fall from the cloud base. Numerical simulations using the non-hydrostatic meso-scale model MM5 with the Reisner graupel explicit moisture scheme confirm the main observational results. Rain water at the lower level is mainly generated from the melting of snow and graupel falling from the upper level where snow and graupel are generated and grown from collection with cloud and rain water. Thus the mixed-phase cloud process, in which ice phase coexists and interacts with liquid phase (cloud and rain drops), plays the most important role in the formation and development of heavy convective rainfall in the Meiyu frontal system.
基金Project supported by the National Natural Science Foundation of China (Nos. 10372026 and 10772751)
文摘A multi-scale continuous-discrete model based on the effects of the p27 gene control is built to simulate the avascular tumor growth. At the tissue level, the continuous Eulerian model is adopted to determine the distribution of the concentration of oxygen, the extracellular matrix (ECM), and the matrix-degradative enzyme (MDE). At the cellular level, the discrete Lagrangien model is adopted to determine the movement, the proliferation, and the death of single tumor cells (TCs). At the genetic level, whether a cell is committed to mitosis is determined by solving a set of equations modeling the effects of the p27 gene control. The avascular morphological evolution of the solid tumor growth is simulated, including the radius the oxygen distribution over time, and the expression. of the solid tumor, the number of the TCs, inhibiting effect' of the up-regulating p27 gene
文摘Long-span bridges are special structures that require advanced analysis techniques to examine their performance. This paper presents a procedure developed to model the Confederation Bridge using 3-D beam elements. The model was validated using the data collected before the opening of the bridge to the public. The bridge was instrumented to conduct fullscale static and dynamic tests. The static tests were to measure the deflection of the bridge pier while the dynamic tests to measure the free vibrations of the pier due to a sudden release of the static load. Confederation Bridge is one of the longest reinforced concrete bridges in the world. It connects the province of Prince Edward Island and the province of New Brunswick in Canada. Due to its strategic location and vital role as a transportation link between these two provinces, it was designed using higher safety factors than those for typical highway bridges. After validating the present numerical model, a procedure was developed to evaluate the performance of similar bridges subjected to traffic and seismic loads. It is of interest to note that the foundation stiffness and the modulus of elasticity of the concrete have significant effects on the structural responses of the Confederation Bridge.
基金National Research Council of Thailand(NRCT)and Khon Kaen University:N42A650291.
文摘The purpose of these investigations is to find the numerical outcomes of the fractional kind of biological system based on Leptospirosis by exploiting the strength of artificial neural networks aided by scale conjugate gradient,called ANNs-SCG.The fractional derivatives have been applied to get more reliable performances of the system.The mathematical form of the biological Leptospirosis system is divided into five categories,and the numerical performances of each model class will be provided by using the ANNs-SCG.The exactness of the ANNs-SCG is performed using the comparison of the reference and obtained results.The reference solutions have been obtained by using theAdams numerical scheme.For these investigations,the data selection is performed at 82%for training,while the statics for both testing and authentication is selected as 9%.The procedures based on the recurrence,mean square error,error histograms,regression,state transitions,and correlation will be accomplished to validate the fitness,accuracy,and reliability of the ANNs-SCG scheme.