期刊文献+
共找到11,741篇文章
< 1 2 250 >
每页显示 20 50 100
Semi-analytical investigation of heat transfer in a porous convective radiative moving longitudinal fin exposed to magnetic field in the presence of a shape-dependent trihybrid nanofluid 被引量:1
1
作者 C.G.PAVITHRA B.J.GIREESHA M.L.KEERTHI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期197-216,共20页
The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, a... The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, are considered. These shapes include spherical(Fe_3O_4), cylindrical(Au), and platelet(Zn) configurations. The combination approach is utilized to evaluate the physical and thermal characteristics of the trihybrid and hybrid nanofluids, excluding the thermal conductivity and dynamic viscosity. These two properties are inferred by means of the interpolation method based on the volume fraction of nanoparticles. The governing equation is transformed into a dimensionless form, and the Adomian decomposition Sumudu transform method(ADSTM) is adopted to solve the conundrum of a moving fin immersed in a trihybrid nanofluid. The obtained results agree well with those numerical simulation results, indicating that this research is reliable. The influence of diverse factors on the thermal overview for varying noninteger values of γ is analyzed and presented in graphical representations. Furthermore, the fluctuations in the heat transfer concerning the pertinent parameters are studied. The results show that the heat flux in the presence of the combination of spherical, cylindrical, and platelet nanoparticles is higher than that in the presence of the combination of only spherical and cylindrical nanoparticles. The temperature at the fin tip increases by 0.705 759% when the value of the Peclet number increases by 400%, while decreases by 11.825 13% when the value of the Hartman number increases by 400%. 展开更多
关键词 convection radiation moving longitudinal fin Adomian decomposition Sumudu transform method(ADSTM) trihybrid nanofluid magnetic field
下载PDF
Heat-Generating Effects Involving Multiple Nanofluids in a Hybrid Convective Boundary Layer Flow on the Sloping Plate in a Porous Medium
2
作者 Md. Nasir Uddin Md. Abdullah Al Mamun Md. Masudar Rahman 《Advances in Materials Physics and Chemistry》 CAS 2024年第10期235-247,共13页
The hybrid convective boundary layer circulation involving multiple nanofluids via a medium with pores is approaching a sloping plate. An investigation regarding the heat-generating effects upon the examined nanofluid... The hybrid convective boundary layer circulation involving multiple nanofluids via a medium with pores is approaching a sloping plate. An investigation regarding the heat-generating effects upon the examined nanofluid flows has been carried out through computational analysis. A mathematical framework employing governing differential equations that are partial has been implemented to produce an ensemble of ordinary differential equations, which happen to be nonlinear that incorporate nanofluid flows by utilizing acceptable transformations. Through the combination of the Nachtsheim-Swigert shooting method and the Runge-Kutta method, the group of resulting non-dimensionalized equations is solved computationally. In a few special, confined cases, the corresponding numeric output is thereafter satisfactorily matched with the existing available research. The consequences of heat generation regarding local skin friction coefficient and rate of heat in conjunction with mass transfer have been investigated, evaluated, and reported on the basis of multiple nanofluid flows. 展开更多
关键词 Heat-Generating Hybrid convection Nanofluids Porous Medium Sloping Plate
下载PDF
Understanding Simulated Causes of Damaging Surface Winds in a Derecho-Producing Mesoscale Convective System near the East China Coast Based on Convection-Permitting Simulations
3
作者 Liping LUO Ming XUE +3 位作者 Xin XU Lijuan LI Qiang ZHANG Ziqi FAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2112-2130,共19页
A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45... A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45 m s^(–1). A simulation using the Weather Research and Forecasting model with a 1.5-km grid spacing generally reproduces the development and subsequent organization of this convective system into an MCS, with an eastward protruding bow segment over the sea. In the simulation, an east-west-oriented high wind swath is generated behind the gust front of the MCS. Descending dry rear-to-front inflows behind the bow and trailing gust front are found to feed the downdrafts in the main precipitation regions. The inflows help to establish spreading cold outflows and enhance the downdrafts through evaporative cooling. Meanwhile, front-to-rear inflows from the south are present, associated with severely rearward-tilted updrafts initially forming over the gust front. Such inflows descend behind(north of) the gust front, significantly enhancing downdrafts and near-surface winds within the cold pool. Consistently, calculated trajectories show that these parcels that contribute to the derecho originate primarily from the region ahead(south) of the east-west-oriented gust front, and dry southwesterly flows in the low-to-middle levels contribute to strong downdrafts within the MCS. Moreover, momentum budget analyses reveal that a large westward-directed horizontal pressure gradient force within the simulated cold pool produced rapid flow acceleration towards Nantong. The analyses enrich the understanding of damaging wind characteristics over coastal East China and will prove helpful to operational forecasters. 展开更多
关键词 damaging surface winds convection-permitting simulations mesoscale convective system gust front cold pool
下载PDF
Local Torrential Rainfall Event within a Mei-Yu Season Mesoscale Convective System:Importance of Back-Building Processes
4
作者 Honglei ZHANG Ming XUE +2 位作者 Hangfeng SHEN Xiaofan LI Guoqing ZHAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期847-863,共17页
An extreme rainfall event occurred over Hangzhou,China,during the afternoon hours on 24 June 2013.This event occurred under suitable synoptic conditions and the maximum 4-h cumulative rainfall amount was over 150 mm.T... An extreme rainfall event occurred over Hangzhou,China,during the afternoon hours on 24 June 2013.This event occurred under suitable synoptic conditions and the maximum 4-h cumulative rainfall amount was over 150 mm.This rainfall event had two major rainbands.One was caused by a quasi-stationary convective line,and the other by a backbuilding convective line related to the interaction of the outflow boundary from the first rainband and an existing low-level mesoscale convergence line associated with a mei-yu frontal system.The rainfall event lasted 4 h,while the back-building process occurred in 2 h when the extreme rainfall center formed.So far,few studies have examined the back-building processes in the mei-yu season that are caused by the interaction of a mesoscale convergence line and a convective cold pool.The two rainbands are successfully reproduced by the Weather Research and Forecasting(WRF)model with fourlevel,two-way interactive nesting.In the model,new cells repeatedly occur at the west side of older cells,and the backbuilding process occurs in an environment with large CAPE,a low LFC,and plenty of water vapor.Outflows from older cells enhance the low-level convergence that forces new cells.High precipitation efficiency of the back-building training cells leads to accumulated precipitation of over 150 mm.Sensitivity experiments without evaporation of rainwater show that the convective cold pool plays an important role in the organization of the back-building process in the current extreme precipitation case. 展开更多
关键词 torrential rainfall back-building processes numerical simulation trigger mechanism convergence line convective cold pool
下载PDF
Recognition of Organizational Morphology of Mesoscale Convective Systems Using Himawari-8 Observations
5
作者 SHOU Yi-xuan ZHANG Su-zhao LU Feng 《Journal of Tropical Meteorology》 SCIE 2024年第3期289-305,共17页
The onset,evolution,and propagation processes of convective cells can be reflected by the organizational morphology of mesoscale convective systems(MCSs),which are key factors in determining the potential for heavy pr... The onset,evolution,and propagation processes of convective cells can be reflected by the organizational morphology of mesoscale convective systems(MCSs),which are key factors in determining the potential for heavy precipitation.This paper proposed a method for objectively classifying and segmenting MCSs using geosynchronous satellite observations.Validation of the product relative to the classification in radar composite reflectivity imagery indicates that the algorithm offers skill for discriminating between convective and stratiform areas and matched 65%of convective area identifications in radar imagery with a false alarm rate of 39%and an accuracy of 94%.A quantitative evaluation of the similarity between the structures of 50 MCSs randomly obtained from satellite and radar observations shows that the similarity was as high as 60%.For further testing,the organizational modes of the MCS that caused the heavy precipitation in Northwest China on August 21,2016(hereinafter known as the“0821”rainstorm)were identified.It was found that the MCS,accompanied by the“0821”rainstorm,successively exhibited modes of the isolated cell,squall line with parallel stratiform(PS)rain,and non-linear system during its life cycle.Among them,the PS mode might have played a key role in causing this flooding.These findings are in line with previous studies. 展开更多
关键词 mesoscale convective system SATELLITE organizational morphology extremely heavy precipitation
下载PDF
Experimental Study and Thermal Modelling of Cocoa Shell Convective Drying in an Indirect Solar Dryer
6
作者 Siaka Touré Adjo Christelle Ogo Modibo Sidibé 《Modeling and Numerical Simulation of Material Science》 2024年第2期69-78,共10页
The concern of the present work is the convective drying of empty cocoa shells in an indirect solar dryer. Some drying experiments, using one sample, were carried out. During the experiments, the sample is introduced ... The concern of the present work is the convective drying of empty cocoa shells in an indirect solar dryer. Some drying experiments, using one sample, were carried out. During the experiments, the sample is introduced in the drying chamber. Then at steady time intervals, the sample is withdrawn from the drying chamber, for a rapid weighing. After each weighing, the sample is reintroduced in the dryer. At each time interval, the ambient temperature of the drying chamber and its relative humidity γ are measured by a thermo-hygrometer. From the experimental data, a theoretical determination of the moisture evaporated from the product was performed and a good agreement was found between the theoretical and experimental values, confirmed by the value of the RMSE. Those calculations used the constants in the Nusselt number found in literature. Then those constants were evaluated again, to get new values more suitable with the experimental data. The dimensionless numbers of Nusselt, Grashof and Prandtl were calculated. That allowed the calculation of the average value of the Nusselt number. The average convective heat transfer coefficient was determined. 展开更多
关键词 Shells of Cocoa Pods Indirect Solar Dryer Moisture Evaporated Constants of the Nusselt Number convective Heat Transfer Coefficient
下载PDF
Hybrid Effects on MHD Mixed Convective Boundary Layer Flow through a Sloped Plate in Existence of Nanofluid-Saturated Porous Medium
7
作者 Md. Nasir Uddin Abdul Halim Bhuiyan +1 位作者 Zahurul Islam Tahmina Tahrim 《Journal of Applied Mathematics and Physics》 2024年第9期3037-3052,共16页
This study examines the effects of heat, mass, and boundary layer assumptions-based nanoparticle characteristics on the hybrid effects of using MHD in conjunction with mixed convective flow through a sloped vertical p... This study examines the effects of heat, mass, and boundary layer assumptions-based nanoparticle characteristics on the hybrid effects of using MHD in conjunction with mixed convective flow through a sloped vertical pore plate in the existence of medium of porous. Physical characteristics such as thermo-diffusion, injection-suction, and viscous dissipation are taken into consideration, in addition to an equally distributed magnetic force utilized as well in the completely opposite path of the flow. By means of several non-dimensional transformations, the momentum, energy, concentration, and nanoparticle volume fraction equations under investigation are converted in terms of nonlinear boundary layer equations and computationally resolved by utilizing the sixth-order Runge-Kutta strategy in combination together with the iteration of Nachtsheim-Swigert shooting procedure. By contrasting the findings produced for a few particular examples with those found in the published literature, the correctness of the numerical result is verified, and a rather good agreement is found. Utilizing various ranges of pertinent factors, computing findings are determined not only regarding velocity, temperature, and concentration as well as nanoparticle fraction of volume but also concerning with local skin-friction coefficient, local Nusselt and general Sherwood numbers associated with nanoparticle Sherwood number. The findings of the study demonstrate that increasing the fluid suction parameter decreases the velocity and temperature of the flow field in conjunction with concentration and has a variable impact on the nanoparticle fraction of volume, despite an increasing behavior in the local skin friction coefficient and local Nusselt as well as general Sherwood numbers and an increasing behavior in the local nanoparticle Sherwood number. Furthermore, enhancing a Schmidt number leads to a reduction in the local nanoparticle Sherwood number and a rise in the nanoparticle proportion of volume. Along with concentration, it also reduces temperature and velocity. However, it also raises the local Sherwood and Nusselt numbers and reduces the local skin friction coefficient. 展开更多
关键词 Hybrid Effects Mixed convection MHD NANOFLUID Viscous Dissipation
下载PDF
Magnetohydrodynamic Conjugate Free Convective Heat Transfer Analysis of an Isothermal Horizontal Circular Cylinder with Temperature Dependent Viscosity
8
作者 NHM. A. Azim 《Journal of Applied Mathematics and Physics》 2024年第10期3384-3401,共18页
Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boun... Heat transfers due to MHD-conjugate free convection from the isothermal horizontal circular cylinder while viscosity is a function of temperature is investigated. The governing equations of the flow and connected boundary conditions are made dimensionless using a set of non-dimensional parameters. The governing equations are solved numerically using the finite difference method. Numerical results are obtained for various values of viscosity variation parameter, Prandtl number, magnetic parameter, and conjugate conduction parameter for the velocity and the temperature within the boundary layer as well as the skin friction coefficients and heat transfer rate along the surface. 展开更多
关键词 Conjugate Free convection Horizontal Circular Cylinder Implicit Finite Difference Method MHD Temperature Dependent Viscosity
下载PDF
A COMPREHENSIVE ANALYSIS OF INTERACTIONS BETWEEN MESO-SCALE CONVECTIVE CLOUD CLUSTERS IN TYPHOONS AND MESOSCALE HEAVY RAINS 被引量:1
9
作者 林毅 刘爱鸣 林新彬 《Journal of Tropical Meteorology》 SCIE 2003年第1期80-85,共6页
In this paper, time and space distribution regularity of meso-scale heavy rains in five selected typhoons which landed at Fujian from 1996 to 1998 has been analyzed. Besides, with hourly digitized satellite infrared i... In this paper, time and space distribution regularity of meso-scale heavy rains in five selected typhoons which landed at Fujian from 1996 to 1998 has been analyzed. Besides, with hourly digitized satellite infrared imagery, the features of the mesoscale are revealed for the genesis and evolution of mesoscale convective systems in typhoons. It indicates that the intensity of mesoscale storms is closely connected with the temperature and the area of the coldest cloud cluster. The heavy rainfall usually emerges on the eastern side of the mesoscale convective cloud clusters, where the cloud mass is developing and with a dense gradient and big curvature of isoline of the cloud top temperature. 展开更多
关键词 TYPHOONS MESOSCALE heavy rains convective cloud clusters
下载PDF
Synergistic Effect of the Planetary-scale Disturbance, Typhoon and Meso-β-scale Convective Vortex on the Extremely Intense Rainstorm on 20 July 2021 in Zhengzhou 被引量:3
10
作者 Guanshun ZHANG Jiangyu MAO +5 位作者 Wei HUA Xiaofei WU Ruizao SUN Ziyu YAN Yimin LIU Guoxiong WU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期428-446,共19页
On 20 July 2021,northern Henan Province in China experienced catastrophic flooding as a result of an extremely intense rainstorm,with a record-breaking hourly rainfall of 201.9 mm during 0800–0900 UTC and daily accum... On 20 July 2021,northern Henan Province in China experienced catastrophic flooding as a result of an extremely intense rainstorm,with a record-breaking hourly rainfall of 201.9 mm during 0800–0900 UTC and daily accumulated rainfall in Zhengzhou City exceeding 600 mm(“Zhengzhou 7.20 rainstorm”for short).The multi-scale dynamical and thermodynamical mechanisms for this rainstorm are investigated based on station-observed and ERA-5 reanalysis datasets.The backward trajectory tracking shows that the warm,moist air from the northwestern Pacific was mainly transported toward Henan Province by confluent southeasterlies on the northern side of a strong typhoon In-Fa(2021),with the convergent southerlies associated with a weaker typhoon Cempaka(2021)concurrently transporting moisture northward from South China Sea,supporting the rainstorm.In the upper troposphere,two equatorward-intruding potential vorticity(PV)streamers within the planetary-scale wave train were located over northern Henan Province,forming significant divergent flow aloft to induce stronger ascending motion locally.Moreover,the converged moist air was also blocked by the mountains in western Henan Province and forced to rise so that a deep meso-β-scale convective vortex(MβCV)was induced over the west of Zhengzhou City.The PV budget analyses demonstrate that the MβCV development was attributed to the positive feedback between the rainfall-related diabatic heating and high-PV under the strong upward PV advection during the Zhengzhou 7.20 rainstorm.Importantly,the MβCV was forced by upper-level larger-scale westerlies becoming eastward-sloping,which allowed the mixtures of abundant raindrops and hydrometeors to ascend slantwise and accumulate just over Zhengzhou City,resulting in the record-breaking hourly rainfall locally. 展开更多
关键词 extreme rainstorm potential vorticity trajectory tracking planetary-scale disturbance meso-β-scale convective system
下载PDF
Impact of Revised Trigger and Closure of the Double-Plume Convective Parameterization on Precipitation Simulations over East Asia 被引量:1
11
作者 Xiaohan LI Yi ZHANG +4 位作者 Yanluan LIN Xindong PENG Baiquan ZHOU Panmao ZHAI Jian LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第7期1225-1243,共19页
A double-plume convective parameterization scheme is revised to improve the precipitation simulation of a global model(Global-to-Regional Integrated Forecast System;GRIST).The improvement is achieved by considering th... A double-plume convective parameterization scheme is revised to improve the precipitation simulation of a global model(Global-to-Regional Integrated Forecast System;GRIST).The improvement is achieved by considering the effects of large-scale dynamic processes on the trigger of deep convection.The closure,based on dynamic CAPE,is improved accordingly to allow other processes to consume CAPE under the more restricted convective trigger condition.The revised convective parameterization is evaluated with a variable-resolution model setup(110–35 km,refined over East Asia).The Atmospheric Model Intercomparison Project(AMIP)simulations demonstrate that the revised convective parameterization substantially delays the daytime precipitation peaks over most land areas,leading to an improved simulated diurnal cycle,evidenced by delayed and less frequent afternoon precipitation.Meanwhile,changes to the threshold of the trigger function yield a small impact on the diurnal amplitude of precipitation because of the consistent setting of dCAPE-based trigger and closure.The simulated mean precipitation remains reasonable,with some improvements evident along the southern slopes of the Tibetan Plateau.The revised scheme increases convective precipitation at the lower levels of the windward slope and reduces the large-scale precipitation over the upper slope,ultimately shifting the rainfall peak southward,which is in better agreement with the observations. 展开更多
关键词 convective parameterization diurnal cycle of precipitation East Asia variable-resolution modeling
下载PDF
Organizational Modes and Environmental Conditions of the Severe Convective Weathers Produced by the Mesoscale Convective Systems in South China 被引量:1
12
作者 张元春 鲁蓉 +1 位作者 孙建华 杨新林 《Journal of Tropical Meteorology》 SCIE 2023年第1期26-38,共13页
Composite radar reflectivity data during April-September 2011-2015 are used to investigate and classify storms in south China(18-27°N;105-120°E). The storms appear most frequently in May. They are either lin... Composite radar reflectivity data during April-September 2011-2015 are used to investigate and classify storms in south China(18-27°N;105-120°E). The storms appear most frequently in May. They are either linear;cellular or nonlinear systems, taking up 29.45%, 24.51% and 46.04%, respectively, in terms of morphology. Linear systems are subdivided into six morphologies: trailing stratiform precipitation(TS), bow echoes(BE), leading stratiform precipitation(LS), embedded line(EL), no stratiform precipitation(NS) and parallel stratiform precipitation(PS). The TS and NS modes have the highest frequencies but there are only small samples of LS(0.61%) and PS(0.79%) modes.Severe convective wind(≥17m s-1at surface level) accounts for the highest percentage(35%) of severe convective weather events produced by cellular systems including individual cells(IC) and clusters of cells(CC). Short-duration heavy rainfall(≥50 mm h-1) and severe convective wind are the most common severe weather associated with TS and BE modes. Comparison of environmental physical parameters shows that cellular convection systems tend to occur in the environment with favorable thermal condition, substantial unstable energy and low precipitable water from the surface to300 hPa(PWAT). However, the environmental conditions favoring the initiation of linear systems feature strong vertical wind shear, high PWAT, and intense convective inhibition. The environmental parameters favoring the initiation of nonlinear systems are between those of the other two types of morphology. 展开更多
关键词 storms composite reflectivity MORPHOLOGY severe convective weather environmental physical parameter
下载PDF
Erratum to: A Two-plume Convective Model forPrecipitation Extremes
13
作者 Zihan YIN Panxi DAI Ji NIE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第4期743-743,共1页
Erratum to:Yin,Z.H.,P.X.Dai,and J.Nie,2021:A two-plume convective model for precipitation extremes.Adv.Atmos.Sci.,38(6),957−965,https://doi.org/10.1007/s00376-021-0404-8.
关键词 convective EXTREMES convective
下载PDF
Preface to the Special Issue on the 14th International Conference on Mesoscale Convective Systems and High-Impact Weather
14
作者 Zhemin TAN Qinghong ZHANG +3 位作者 Xudong LIANG Kun ZHAO Xin XU Lili LEI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第5期745-746,共2页
A mesoscale convective system(MCS)is an organized cluster of thunderstorms known to be the most important convective mode in causing disastrous high-impact weather,such as heavy rainfall,hail,damaging winds,and tornad... A mesoscale convective system(MCS)is an organized cluster of thunderstorms known to be the most important convective mode in causing disastrous high-impact weather,such as heavy rainfall,hail,damaging winds,and tornadoes.The small spatial scale and fast temporal evolution of MCSs make their observation and prediction very challenging.East Asia is home to the world’s most prominent monsoon,setting the stage for various severe convective weather events.MCSs and their associated high-impact weather have long been critical issues of concern;as such,their research efforts are valued by governments in East Asia. 展开更多
关键词 WEATHER convective winds
下载PDF
Isolated deep convections over the Tibetan Plateau in the rainy season during 2001–2020 被引量:1
15
作者 Ying Na Chaofan Li Riyu Lu 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期16-21,共6页
The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than m... The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than mesoscale convective systems(MCSs),over the TP in the rainy season(June-September)during 2001–2020.The authors used satellite precipitation and brightness temperature observations from the Global Precipitation Measurement mission.Results show that IDCs mainly concentrate over the southern TP.The IDC number per rainy season decreases from around 140 over the southern TP to around 10 over the northern TP,with an average 54.2.The initiation time of IDCs exhibits an obvious diurnal cycle,with the peak at 1400–1500 LST and the valley at 0900–1000 LST.Most IDCs last less than five hours and more than half appear for only one hour.IDCs generally have a cold cloud area of 7422.9 km^(2),containing a precipitation area of approximately 65%.The larger the IDC,the larger the fraction of intense precipitation it contains.IDCs contribute approximately 20%–30%to total precipitation and approximately 30%–40%to extreme precipitation over the TP,with a larger percentage in July and August than in June and September.In terms of spatial distribution,IDCs contribute more to both total precipitation and extreme precipitation over the TP compared to the surrounding plain regions.IDCs over the TP account for a larger fraction than MCSs,indicating the important role of IDCs over the region. 展开更多
关键词 Isolated deep convection Tibetan plateau Climatological characteristics Precipitation contribution Extreme precipitation
下载PDF
Entropy generation analysis from the time-dependent quadratic combined convective flow with multiple diffusions and nonlinear thermal radiation
16
作者 P.M.Patil Bharath Goudar 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期46-55,共10页
Diffusions of multiple components have numerous applications such as underground water flow, pollutant movement, stratospheric warming, and food processing. Particularly, liquid hydrogen is used in the cooling process... Diffusions of multiple components have numerous applications such as underground water flow, pollutant movement, stratospheric warming, and food processing. Particularly, liquid hydrogen is used in the cooling process of the aeroplane. Further, liquid nitrogen can find applications in cooling equipment or electronic devices, i.e., high temperature superconducting(HTS) cables. So, herein, we have analysed the entropy generation(EG), nonlinear thermal radiation and unsteady(time-dependent) nature of the flow on quadratic combined convective flow over a permeable slender cylinder with diffusions of liquid hydrogen and nitrogen. The governing equations for flow and heat transfer characteristics are expressed in terms of nonlinear coupled partial differential equations. The solutions of these equations are attempted numerically by employing the quasilinearization technique with the implicit finite difference approximation. It is found that EG is minimum for double diffusion(liquid hydrogen and heat diffusion)than triple diffusion(diffusion of liquid hydrogen, nitrogen and heat). The enhancing values of the radiation parameter R_(d) and temperature ratio θ_(w) augment the fluid temperature for steady and unsteady cases as well as the local Nusselt number. Because, the fluid absorbs the heat energy released due to radiation, and in turn releases the heat energy from the cylinder to the surrounding surface. 展开更多
关键词 Unsteady flow ENTROPY Radiation Quasilinearization technique Numerical analysis Quadratic combined convection
下载PDF
Numerical Study of Natural Convective Heat Transfer in an Air Filled Square Cavity Heated from Below and Symmetrically Cooled from the Sides with a Partition in the Hot Wall
17
作者 Farah Zemani-Kaci Amina Sabeur-Bendhina 《Fluid Dynamics & Materials Processing》 EI 2023年第2期513-539,共27页
A two-dimensional numerical study of laminar natural convection in a square enclosure filled with air with a wall partially heated on the bottom is presented.The heat source is located on the lower wall with different... A two-dimensional numerical study of laminar natural convection in a square enclosure filled with air with a wall partially heated on the bottom is presented.The heat source is located on the lower wall with different heated widths varied from 20 to 80%(ε=0.2–0.8)of the total width of the lower wall and different heights h=H/4 and H/2 of the partition.The effect of the partition height on the main system dynamics is investigated through solution of the two-dimensional Navier-Stokes equations and the energy equation by means of a finite volume method based on the SIMPLE algorithm.The influence of the Rayleigh number(Ra=10^(3) to 10^(6))and the hot wall length is also examined.It is shown that the average Nusselt number grows whenεincreases and when h decreases.For a given value ofεand h,the average Nusselt number increases as Ra increases.It is concluded that the partition height causes a decrease in the average Nusselt number. 展开更多
关键词 Natural convection square enclosure heat source partial partition nusselt number
下载PDF
Convective Storm VIL and Lightning Nowcasting Using Satellite and Weather Radar Measurements Based on Multi-Task Learning Models
18
作者 Yang LI Yubao LIU +3 位作者 Rongfu SUN Fengxia GUO Xiaofeng XU Haixiang XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第5期887-899,共13页
Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forec... Convective storms and lightning are among the most important weather phenomena that are challenging to forecast.In this study,a novel multi-task learning(MTL)encoder-decoder U-net neural network was developed to forecast convective storms and lightning with lead times for up to 90 min,using GOES-16 geostationary satellite infrared brightness temperatures(IRBTs),lightning flashes from Geostationary Lightning Mapper(GLM),and vertically integrated liquid(VIL)from Next Generation Weather Radar(NEXRAD).To cope with the heavily skewed distribution of lightning data,a spatiotemporal exponent-weighted loss function and log-transformed lightning normalization approach were developed.The effects of MTL,single-task learning(STL),and IRBTs as auxiliary input features on convection and lightning nowcasting were investigated.The results showed that normalizing the heavily skew-distributed lightning data along with a log-transformation dramatically outperforms the min-max normalization method for nowcasting an intense lightning event.The MTL model significantly outperformed the STL model for both lightning nowcasting and VIL nowcasting,particularly for intense lightning events.The MTL also helped delay the lightning forecast performance decay with the lead times.Furthermore,incorporating satellite IRBTs as auxiliary input features substantially improved lightning nowcasting,but produced little difference in VIL forecasting.Finally,the MTL model performed better for forecasting both lightning and the VIL of organized convective storms than for isolated cells. 展开更多
关键词 convection/lightning nowcasting multi-task learning geostationary satellite weather radar U-net model
下载PDF
Effect of periodic heat transfer on the transient thermal behavior of a convective-radiative fully wet porous moving trapezoidal fin
19
作者 B.J.GIREESHA M.L.KEERTHI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第4期653-668,共16页
A moving trapezoidal profiled convective-radiative porous longitudinal fin wetted in a single-phase fluid is considered in the current article.The periodic variation in the fin base temperature is taken into account a... A moving trapezoidal profiled convective-radiative porous longitudinal fin wetted in a single-phase fluid is considered in the current article.The periodic variation in the fin base temperature is taken into account along with the temperature sensitive thermal conductivity and convective heat transfer coefficients.The modeled problem,which is resolved into a non-linear partial differential equation(PDE),is made dimensionless and solved by employing the finite difference method(FDM).The results are displayed through graphs and discussed.The effects of amplitude,frequency of oscillation,wet nature,Peclet number,and other relevant quantities on the distribution of temperature through the fin length and with the dimensionless time are investigated.It is deciphered that the periodic heat transfer gives rise to the wavy nature of the fin thermal profile against time.The analysis is beneficial in the design of fin structures for applications like solar collectors,space/airborne applications,and refrigeration industries. 展开更多
关键词 convection fully wet porous fin trapezoidal profile moving fin unsteady periodic thermal condition
下载PDF
Analysis of a Large-Scale Strong Convective Weather under a Weak Water Vapor Condition in Shanxi, China in Spring
20
作者 Jingyu Hao Guixiang Zhao +3 位作者 Jie Zhu Yang Wang Yanzhi Ma Yuanyuan Guo 《Journal of Geoscience and Environment Protection》 2023年第7期165-180,共16页
This article uses NCEP 1° × 1° grid point reanalysis data, conventional meteorological observation data, FY2G satellite TBB data, radar combined reflectivity data, ground-encrypted automatic station obs... This article uses NCEP 1° × 1° grid point reanalysis data, conventional meteorological observation data, FY2G satellite TBB data, radar combined reflectivity data, ground-encrypted automatic station observation data, etc., through the synoptic diagnostic analysis method for a comprehensive analysis of a large-scale underreporting of a strong convective weather process under weak water vapor conditions on the 13th April 2017. The results show that the severe convective weather process is affected by the short-wave disturbance in the northwesterly airflow, triggered by the uplift of the westerly trough, the mid-low shear line and the mesoscale front of the boundary layer in the dry northwest. The jet stream is also an important system for the development of this strong convective weather. In the case of weak water vapor and energy conditions, if there is strong dynamic uplift, vertical wind shear and large temperature differences, strong convection can still occur;the convection occurrence area corresponds to the high potential vorticity abnormal area. The movement speed and direction of the cloud cluster are also consistent with the movement of the high potential vorticity anomaly area;the potential vorticity anomaly will cause the cyclonic circulation to increase, and the upward movement will also increase, which is conducive to the development of strong convective weather. According to the position of the dew point front in the β mesoscale, the ground cold pool corresponds to the small value area of the convective cloud cluster TBB. The front of the cold pool is accompanied by a mesoscale ground convergence line, and the uplift is strengthened, which is conducive to the development and forward movement of thunderstorms;the outflow of the cold pool is guided by 700 hPa. When the wind direction is the same, the movement speed will increase, and the stronger the outflow, the faster the movement speed. 展开更多
关键词 Strong convection Mesoscale Boundary Layer Front Potential Vorticity Environmental Characteristics Maintenance and Evolution
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部