Rice direct seeding has the significant potential to save labor and water,conserve environmental resources,and reduce greenhouse gas emissions tremendously.Therefore,rice direct seeding is becoming the major cultivati...Rice direct seeding has the significant potential to save labor and water,conserve environmental resources,and reduce greenhouse gas emissions tremendously.Therefore,rice direct seeding is becoming the major cultivation technology applied to rice production in many countries.Identifying and utilizing genes controlling mesocotyl elongation is an effective approach to accelerate breeding procedures and meet the requirements for direct-seeded rice(DSR) production.This study used a permanent mapping population with 144 recombinant inbred lines(RILs) and 2 828 bin-markers to detect quantitative trait loci(QTLs) associated with mesocotyl length in 2019 and 2020.The mesocotyl lengths of the rice RILs and their parents,Lijiangxintuanheigu(LTH) and Shennong 265(SN265),were measured in a growth chamber at 30°C in a dark environment.A total of 16 QTLs for mesocotyl length were identified on chromosomes 1(2),2(4),3(2),4,5,6,7,9,11(2),and 12.Seven of these QTLs,including qML1a,qML1b,qML2d,qML3a,qML3b,qML5,and qML11b,were reproducibly detected in both years via the interval mapping method.The major QTL,qML3a,was reidentified in two years via the composite interval mapping method.A total of 10 to 413 annotated genes for each QTL were identified in their smallest genetic intervals of 37.69 kb to 2.78 Mb,respectively.Thirteen predicted genes within a relatively small genetic interval(88.18 kb) of the major mesocotyl elongation QTL,qML3a,were more thoroughly analyzed.Finally,the coding DNA sequence variations among SN265,LTH,and Nipponbare indicated that the LOC_Os03g50550 gene was the strongest candidate gene for the qML3a QTL controlling the mesocotyl elongation.This LOC_Os03g50550 gene encodes a mitogen-activated protein kinase.Relative gene expression analysis using qRT-RCR further revealed that the expression levels of the LOC_Os03g50550 gene in the mesocotyl of LTH were significantly lower than in the mesocotyl of SN265.In conclusion,these results further strengthen our knowledge about rice’s genetic mechanisms of mesocotyl elongation.This investigation’s discoveries will help to accelerate breeding programs for new DSR variety development.展开更多
A mechanized direct seeding of rice with less labor and water usage,has been widely adopted.However,this approach requires varieties that exhibit uniform seedling emergence.Mesocotyl elongation(ME)offers the main driv...A mechanized direct seeding of rice with less labor and water usage,has been widely adopted.However,this approach requires varieties that exhibit uniform seedling emergence.Mesocotyl elongation(ME)offers the main drive of fast emergence of rice seedlings from soils;nevertheless,its genetic basis remains unknown.Here,we identify a major rice quantitative trait locus Mesocotyl Elongation1(qME1),an allele of the Green Revolution gene Semi-Dwarf1(SD1),encoding GA20-oxidase for gibberellin(GA)biosynthesis.ME1 expression is strongly induced by soil depth and ethylene.When rice grains are direct-seeded in soils,the ethylene core signaling factor OsEIL1 directly promotes ME1 transcription,accelerating bioactive GA biosynthesis.The GAs further degrade the DELLA protein SLENDER RICE 1(SLR1),alleviating its inhibition of rice PHYTOCHROME-INTERACTING FACTOR-LIKE13(OsPIL13)to activate the downstream expansion gene OsEXPA4 and ultimately promote rice seedling ME and emergence.The ancient traits of long mesocotyl and strong emergence ability in wild rice and landrace were gradually lost in company with the Green Revolution dwarf breeding process,and an elite ME1-R allele(D349H)is found in some modern Geng varieties(long mesocotyl lengths)in northern China,which can be used in the direct seeding and dwarf breeding of Geng varieties.Furthermore,the ectopic and high expression of ME1 driven by mesocotyl-specific promoters resulted in rice plants that could be direct-seeded without obvious plant architecture or yield penalties.Collectively,we reveal the molecular mechanism of rice ME,and provide useful information for breeding new Green Revolution varieties with long mesocotyl suitable for direct-seeding practice.展开更多
Under conditions of labor or resource scarcity,direct seeding,rather than transplantation,is the preferred mode of rice(Oryza sativa)cultivation.This approach requires varieties that exhibit uniform seedling emergence...Under conditions of labor or resource scarcity,direct seeding,rather than transplantation,is the preferred mode of rice(Oryza sativa)cultivation.This approach requires varieties that exhibit uniform seedling emergence.Mesocotyl elongation(ME),the main driver of rapid emergence of rice seedlings from soil,is enhanced by darkness and inhibited by light.Plant polyamine oxidases(PAOs)oxidize polyamines(PAs)and release H2O2,Here,we established that OsPAO5 expression in rice seedlings is increased in the presence of light and inhibited by darkness.To determine its role in ME,we created OsPAO5 mutants using CRISPR/Cas9.Compared with the wild type,pao5 mutants had longer mesocotyls,released less H2O2,and synthesized more ethylene.The mutant seedlings emerged at a higher and more uniform rate,indicating their potential for use in direct seeding.Nucleotide polymorphism analysis revealed that an SNP(PAO5-578G/A)located 578 bp upstream of the OsPAO5 start codon alters its expression,and was selected during rice mesocotyl domestication.The PAO5-578G genotype conferring a long mesocotyl mainly exists in wild rice,most Aus accessions,and some Geng(Japonica)accessions.Intriguingly,knocking out OsPAO5 can remarkably increase the grain weight,grain number,and yield potential.In summary,we developed a novel strategy to obtain elite rice with higher emergence vigor and yield potential,which can be conveniently and widely used to breed varieties of direct-seeding rice.展开更多
The lengths of mesocotyl in the seedlings of 84 lowland rice varieties and 12 upland rice varieties were measured following the treatments of daylight and darkness during germination. The elongation of mesocotyl in th...The lengths of mesocotyl in the seedlings of 84 lowland rice varieties and 12 upland rice varieties were measured following the treatments of daylight and darkness during germination. The elongation of mesocotyl in the varieties tested was inhibited under daylight condition, and the mesocotyl of all the varieties elongated variably under darkness condition. The elongated lengths of the mesocotyl in upland rice, ranging from 0.36 cm to 1,61 cm with an average of 0.81 cm, was obviously longer than those in lowland rice, ranging from 0.12 cm to 1.56 cm with an average of 0.42 cm. Among 14 rice varieties with over 1 cm of mesocotyl length, five belonged to upland rice, and nine to lowland rice. The possible utilization of the elongated-mesocotyl rice germplasm in varietal imorovement, direct-seeded plantina and seed ouritv testina were discussed.展开更多
基金supported by grants from the Natural Science Foundation of Heilongjiang Province, China (LH2020C098)the Fundamental Research Funds for the Research Institutes of Heilongjiang Province, China (CZKYF2020A001)+1 种基金the National Key Research and Development Program of China (2016YFD0300104)the Heilongjiang Province Agricultural Science and Technology Innovation Project, China (2020JCQN001, 2019JJPY007, 2020FJZX049, 2021QKPY009, 2021CQJC003)。
文摘Rice direct seeding has the significant potential to save labor and water,conserve environmental resources,and reduce greenhouse gas emissions tremendously.Therefore,rice direct seeding is becoming the major cultivation technology applied to rice production in many countries.Identifying and utilizing genes controlling mesocotyl elongation is an effective approach to accelerate breeding procedures and meet the requirements for direct-seeded rice(DSR) production.This study used a permanent mapping population with 144 recombinant inbred lines(RILs) and 2 828 bin-markers to detect quantitative trait loci(QTLs) associated with mesocotyl length in 2019 and 2020.The mesocotyl lengths of the rice RILs and their parents,Lijiangxintuanheigu(LTH) and Shennong 265(SN265),were measured in a growth chamber at 30°C in a dark environment.A total of 16 QTLs for mesocotyl length were identified on chromosomes 1(2),2(4),3(2),4,5,6,7,9,11(2),and 12.Seven of these QTLs,including qML1a,qML1b,qML2d,qML3a,qML3b,qML5,and qML11b,were reproducibly detected in both years via the interval mapping method.The major QTL,qML3a,was reidentified in two years via the composite interval mapping method.A total of 10 to 413 annotated genes for each QTL were identified in their smallest genetic intervals of 37.69 kb to 2.78 Mb,respectively.Thirteen predicted genes within a relatively small genetic interval(88.18 kb) of the major mesocotyl elongation QTL,qML3a,were more thoroughly analyzed.Finally,the coding DNA sequence variations among SN265,LTH,and Nipponbare indicated that the LOC_Os03g50550 gene was the strongest candidate gene for the qML3a QTL controlling the mesocotyl elongation.This LOC_Os03g50550 gene encodes a mitogen-activated protein kinase.Relative gene expression analysis using qRT-RCR further revealed that the expression levels of the LOC_Os03g50550 gene in the mesocotyl of LTH were significantly lower than in the mesocotyl of SN265.In conclusion,these results further strengthen our knowledge about rice’s genetic mechanisms of mesocotyl elongation.This investigation’s discoveries will help to accelerate breeding programs for new DSR variety development.
基金supported by the National Natural Science Foundation of China(32188102 and 32101763)Zhejiang Provincial Science and Technology Project(2020R51007)+1 种基金the Key Research and Development Program of Zhejiang province(2022C02011)the Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-CACB-202402).
文摘A mechanized direct seeding of rice with less labor and water usage,has been widely adopted.However,this approach requires varieties that exhibit uniform seedling emergence.Mesocotyl elongation(ME)offers the main drive of fast emergence of rice seedlings from soils;nevertheless,its genetic basis remains unknown.Here,we identify a major rice quantitative trait locus Mesocotyl Elongation1(qME1),an allele of the Green Revolution gene Semi-Dwarf1(SD1),encoding GA20-oxidase for gibberellin(GA)biosynthesis.ME1 expression is strongly induced by soil depth and ethylene.When rice grains are direct-seeded in soils,the ethylene core signaling factor OsEIL1 directly promotes ME1 transcription,accelerating bioactive GA biosynthesis.The GAs further degrade the DELLA protein SLENDER RICE 1(SLR1),alleviating its inhibition of rice PHYTOCHROME-INTERACTING FACTOR-LIKE13(OsPIL13)to activate the downstream expansion gene OsEXPA4 and ultimately promote rice seedling ME and emergence.The ancient traits of long mesocotyl and strong emergence ability in wild rice and landrace were gradually lost in company with the Green Revolution dwarf breeding process,and an elite ME1-R allele(D349H)is found in some modern Geng varieties(long mesocotyl lengths)in northern China,which can be used in the direct seeding and dwarf breeding of Geng varieties.Furthermore,the ectopic and high expression of ME1 driven by mesocotyl-specific promoters resulted in rice plants that could be direct-seeded without obvious plant architecture or yield penalties.Collectively,we reveal the molecular mechanism of rice ME,and provide useful information for breeding new Green Revolution varieties with long mesocotyl suitable for direct-seeding practice.
基金This work was supported by the National Key Research and Development Program of China(2017YFD0100300 and 2016YFD0101801)the Central Public-interest Scientific Institution Basal Research Fund of China(Y2020YJ09 and Y2020PT07)Agricultural Sciences and Technologies Innovation Program of the Chinese Academy of Agricultural Sciences.
文摘Under conditions of labor or resource scarcity,direct seeding,rather than transplantation,is the preferred mode of rice(Oryza sativa)cultivation.This approach requires varieties that exhibit uniform seedling emergence.Mesocotyl elongation(ME),the main driver of rapid emergence of rice seedlings from soil,is enhanced by darkness and inhibited by light.Plant polyamine oxidases(PAOs)oxidize polyamines(PAs)and release H2O2,Here,we established that OsPAO5 expression in rice seedlings is increased in the presence of light and inhibited by darkness.To determine its role in ME,we created OsPAO5 mutants using CRISPR/Cas9.Compared with the wild type,pao5 mutants had longer mesocotyls,released less H2O2,and synthesized more ethylene.The mutant seedlings emerged at a higher and more uniform rate,indicating their potential for use in direct seeding.Nucleotide polymorphism analysis revealed that an SNP(PAO5-578G/A)located 578 bp upstream of the OsPAO5 start codon alters its expression,and was selected during rice mesocotyl domestication.The PAO5-578G genotype conferring a long mesocotyl mainly exists in wild rice,most Aus accessions,and some Geng(Japonica)accessions.Intriguingly,knocking out OsPAO5 can remarkably increase the grain weight,grain number,and yield potential.In summary,we developed a novel strategy to obtain elite rice with higher emergence vigor and yield potential,which can be conveniently and widely used to breed varieties of direct-seeding rice.
基金the Special NationalPrograms for Pioneer Research(Projecn No.2002CCA04100)Zhejiang Provincial Key Programs for Scicnce and Technology(Project No.021102169)Natural Sciences Foundation of Zhejiang Province(Project No.301252).
文摘The lengths of mesocotyl in the seedlings of 84 lowland rice varieties and 12 upland rice varieties were measured following the treatments of daylight and darkness during germination. The elongation of mesocotyl in the varieties tested was inhibited under daylight condition, and the mesocotyl of all the varieties elongated variably under darkness condition. The elongated lengths of the mesocotyl in upland rice, ranging from 0.36 cm to 1,61 cm with an average of 0.81 cm, was obviously longer than those in lowland rice, ranging from 0.12 cm to 1.56 cm with an average of 0.42 cm. Among 14 rice varieties with over 1 cm of mesocotyl length, five belonged to upland rice, and nine to lowland rice. The possible utilization of the elongated-mesocotyl rice germplasm in varietal imorovement, direct-seeded plantina and seed ouritv testina were discussed.