Reactive powder concrete (RPC) is a novel cement-based composite material with ultra-high strength. Embedding a certain amount of short steel fibers in the matrix can improve the RPC’s toughness and overcome the disa...Reactive powder concrete (RPC) is a novel cement-based composite material with ultra-high strength. Embedding a certain amount of short steel fibers in the matrix can improve the RPC’s toughness and overcome the disadvantage of high brittle- ness. In this paper, a number of direct uniaxial tension tests have been carried out with ‘8-shape’ RPC200 specimens. The bond-slip process, mesoscopic structural variation and mechanical characteristics of a fiber pullout of the matrix have been investigated using the real-time SEM loading system and CCD observation tech- niques. The influence of the volume of embedded short steel fibers in matrix on the mesoscopic morphology of attachments on the surface of a pulled individual fiber, the initial cracking force, the ultimate pullout force, interfacial bond strength and the pullout rupture energy have been analyzed. A general formulation relating these quantities to the volume of fibers in matrix has been proposed. The components comprising the interfacial bond strength have been outlined. In addition, the con- tribution that fibers make to enhance and toughen the reactive powder concrete has been discussed. It is shown that there exists an optimal threshold of fiber volume ρv, opt =1.5% at which the bond performance of a fiber pullout of RPC be- haves best.展开更多
The technology of cemented paste backfill(CPB)is an effective method for green mining.In CPB,mixing is a vital process aiming to prepare a paste that meets the non-stratification,non-segregation,and non-bleeding requi...The technology of cemented paste backfill(CPB)is an effective method for green mining.In CPB,mixing is a vital process aiming to prepare a paste that meets the non-stratification,non-segregation,and non-bleeding requirements.As a multiscale granular system,homogenization is one of the challenges in the paste-mixing process.Due to the high shearing,high concentration,and multiscale characteristics,paste exhibits complex rheological properties in the mixing process.An overview of the mesomechanics and structural evolution is presented in this review.The effects of various influencing factors on the paste's rheological properties were investigated,and the rheological models of the paste were outlined from the macroscopic and mesoscopic levels.The results show that the mechanical effects and structural evolution are the fundamental factors affecting the rheological properties of the paste.Existing problems and future development trends are presented to change the practice where the CPB process comes first and the theory lags.展开更多
The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. Acco...The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. According to the results of laboratory direct shear test on the remolded samples, the soil particle parameters of numerical model based on in-situ particle size cumulative curves and 3D granular discrete element method were determined. Then, numerical experiments on different lithology, stone content and gradation composition were conducted. The results show that it is not a flat surface but a shear band that yields in the sample. The curve of particle velocity vs distance from the designed shear surface of test model that is taken as a datum plane in the vertical section of sample shows in "S" shape. The shear disturbance area is about twice the maximum diameter of stone blocks. The greater the stiffness of stone is, the rougher the shear surface is. The shear strength of outwash deposits is largely controlled by lithology and stone content, and the bite force between stone blocks is the root reason of larger friction angle. It is also shown that strain hardening and low shear dilatancy occur under high confining pressure as well as possibility of shear shrinkage. But it is easy to behave shear dilatation and strain softening under low confining pressure. The relationship between particle frictional coefficient and stone content presents an approximately quadratic parabola increase. The strain energy first increases and then drops with the increase of frictional energy. The cohesion increases with soil stiffness increasing but decreases with stone stiffness increasing. Numerical results are consistent with the laboratory test results of remolded samples, which indicate that this method can be a beneficial supplement to determine the parameters of engineering deposit bodies.展开更多
In the present work, a computational frame- work is established for multiscale modeling and analysis of solid propellants. A packing algorithm, considering the am- monium perchlorate (AP) and aluminum (A1) particl...In the present work, a computational frame- work is established for multiscale modeling and analysis of solid propellants. A packing algorithm, considering the am- monium perchlorate (AP) and aluminum (A1) particles as spheres or discs is developed to match the size distribution and volume fraction of solid propellants. A homogenization theory is employed to compute the mean stress and strain of a representative volume element (RVE). Using the mean results, a suitable size of RVE is decided. Without consider- ing the interfaces between particles and matrix, several nu- merical simulations of the relaxation of propellants are per- formed. The relaxation effect and the nonlinear mechanical behavior of propellants which are dependent on the applied loads are discussed. A new technology named surface-based cohesive behavior is proposed to describe the phenomenon of particle dewetting consisting of two ingredients: a damage initiation criterion and a damage evolution law. Several ex- amples considering contact damage behavior are computed and also nonlinear behavior caused by damaged interfaces is discussed in this paper. Furthermore the effects of the criti- cal contact stress, initial contact stiffness and contact failure distance on the damaged interface model have been studied.展开更多
To accurately describe damage within coal, digital image processing technology was used to determine texture parameters and obtain quantitative information related to coal meso-cracks. The relationship between damage ...To accurately describe damage within coal, digital image processing technology was used to determine texture parameters and obtain quantitative information related to coal meso-cracks. The relationship between damage and mesoscopic information for coal under compression was then analysed. The shape and distribution of damage were comprehensively considered in a defined damage variable, which was based on the texture characteristic. An elastic-brittle damage model based on the mesostructure information of coal was established. As a result, the damage model can appropriately and reliably replicate the processes of initiation, expansion, cut-through and eventual destruction of microscopic damage to coal under compression. After comparison, it was proved that the predicted overall stress-strain response of the model was comparable to the experimental result.展开更多
Void closing from a spherical shape to a crack is investigated quantitatively in the present study. The constitutive relation of the Void-free matrix is assumed to obey the Norton power law. A representative volume el...Void closing from a spherical shape to a crack is investigated quantitatively in the present study. The constitutive relation of the Void-free matrix is assumed to obey the Norton power law. A representative volume element (RVE) which includes matrix and void is employed and a Rayleigh-Ritz procedure is developed to study the deformation-rates of a spherical void and a penny-shaped crack. Based on an approximate interpolation scheme, an analytical model for void closure in nonlinear plastic materials is established. It is found that the local plastic flows of the matrix material are the main mechanism of void deformation. It is also shown that the relative void volume during the deformation depends on the Norton exponent, on the far-field stress triaxiality, as well as on the far-field effective strain. The predictions of void closure using the present model are compared with the corresponding results in the literature, showing good agreement. The model for void closure provides a novel way for process design and optimization in terms of elimination of voids in billets because the model for void closure can easily be applied in the CAE analysis.展开更多
A new method regarding mesomechanics finite-element research is proposed to predict the peak shear strength of mudded intercalation materials on a mesoscopic scale. Based on geometric and mechanical parameters, along ...A new method regarding mesomechanics finite-element research is proposed to predict the peak shear strength of mudded intercalation materials on a mesoscopic scale. Based on geometric and mechanical parameters, along with the strain failure criteria obtained by sample's deformation characteristics, uniaxial compression tests on the sample were simulated through a finite-element model, which yielded values consistent with the data from the laboratory uniaxial compression tests, implying that the method is reasonable. Based on this model, a shear test was performed to calculate the peak shear strength of the mudded intercalation, consistent with values reported in the literature, thereby providing a new approach for investigating the mechanical properties of mudded intercalation materials.展开更多
For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital ...For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital imaging, a simulated annealing algorithm is adopted to expand the meso-structural features of deposit bodies in 3D. The construction of the 3D meso-structure of a deposit body is achieved, and then the particle flow analysis program PFC3 D is used to simulate the mechanical properties of the deposit body. It is shown that with a combination of the simulated annealing algorithm and the statistical feature functions, the randomness and heterogeneity of the rock distribution in the 3D inner structure of deposit body medium can be realized, and the reconstructed structural features of the deposit medium can match the features of the digital images well. The spatial utilizations and the compacting effects of the body-centered cubic, hexagonal close and face-centered packing models are high, so these structures can be applied in the simulations of the deposit structures. However, the shear features of the deposit medium vary depending on the different model constructive modes. Rocks, which are the backbone of the deposit, are the factors that determine the shear strength and deformation modulus of the deposit body. The modeling method proposed is useful for the construction of 3D meso-scope models from 2D meso-scope statistics and can be used for studying the mechanical properties of mixed media, such as deposit bodies.展开更多
Based on tensile cracking of SiC_p and decohesion of the interface between SiC_p and Al matrix, a mesomechanical model for tensile deformation of SiC_p/Al composites was developed. The microcracks and multi-scale seco...Based on tensile cracking of SiC_p and decohesion of the interface between SiC_p and Al matrix, a mesomechanical model for tensile deformation of SiC_p/Al composites was developed. The microcracks and multi-scale second phase particles were assumed to distribute homogeneously. A nonlinear quantitative relationship between tensile ductility and volume fraction of SiC_p was established based on the model. The tensile ductility values of 2xxx SiC_p/Al and 6xxx SiC_p/Al composites predicted by the model are in good agreement with the experimental values. The analysis of effects of multi-scale second phases on the ductility of the composites indicates that the ductility decreases with the increase of the volume fraction of SiC_p and precipitates in Al matrix and is almost independent of constituents and dispersoids.展开更多
In this paper,scanning acoustic microscope(SAM) was used to obtain some characteristic photographs which explain the mesoscopic information of several cracked specimens.New results on subsurface information of steel,n...In this paper,scanning acoustic microscope(SAM) was used to obtain some characteristic photographs which explain the mesoscopic information of several cracked specimens.New results on subsurface information of steel,nickel and aluminium were presented.Plastic deformation and crack initiation were observed and analysed.The length of crack propagation was measured.SAM is particularly suited to the study of many mesoscopic phenomena in material science because it can image mesoscopic subsurface feature without sectioning.It is revealed that SAM has a bright future in the field of mesomechanics.展开更多
The real pores in digital cores were simplified into three abstractive types,including prolate ellipsoids,oblate ellipsoids and spheroids.The three-dimensional spheroidal-pore model of digital core was established bas...The real pores in digital cores were simplified into three abstractive types,including prolate ellipsoids,oblate ellipsoids and spheroids.The three-dimensional spheroidal-pore model of digital core was established based on mesoscopic mechanical theory.The constitutive relationship of different types of pore microstructure deformation was studied with Eshelby equivalent medium theory,and the effects of pore microstructure on pore volume compressibility under elastic deformation conditions of single and multiple pores of a single type and mixed types of pores were investigated.The results showed that the pore volume compressibility coefficient of digital core is closely related with porosity,pore aspect ratio and volumetric proportions of different types of pores.(1)The compressibility coefficient of prolate ellipsoidal pore is positively correlated with the pore aspect ratio,while that of oblate ellipsoidal pore is negatively correlated with the pore aspect ratio.(2)At the same mean value of pore aspect ratio satisfying Gaussian distribution,the more concentrated the range of pore aspect ratio,the higher the compressibility coefficient of both prolate and oblate ellipsoidal pores will be,and the larger the deformation under the same stress condition.(3)The pore compressibility coefficient increases with porosity.(4)At a constant porosity value,the higher the proportion of oblate ellipsoidal and spherical pores in the rock,the more easier for the rock to deform,and the higher the compressibility coefficient of the rock is,while the higher the proportion of prolate ellipsoidal pores in the rock,the more difficult it is for rock to deform,and the lower the compressibility coefficient of the rock is.By calculating pore compressibility coefficient of ten classical digital rock samples,the presented analytical elliptical-pore model based on real pore structure of digital rocks can be applied to calculation of pore volume compressibility coefficient of digital rock sample.展开更多
A method for the estimation of thermophysical properties of two-and multi-phase solid propellants is proposed in this paper.The theoretical solutions for thermal conductivity and specific heat of a homogeneous solid p...A method for the estimation of thermophysical properties of two-and multi-phase solid propellants is proposed in this paper.The theoretical solutions for thermal conductivity and specific heat of a homogeneous solid propellant cell in the transient thermal conductivity process are deduced on the condition that one boundary of the cell is heated while others are adiabatic.A homogenization theory and the finite element method are employed to compute the mean temperature and heat flux of a representative volume element(RVE).According to the mean results and the theoretical solutions,the effective thermal conductivity and specific heat of solid propellant can be estimated.A packing algorithm,considering the solid particles(ammonium perchlorate(AP)or aluminum)as spheres or discs,is used to match the size distribution and volume fraction of solid propellants,and some mesoscopic models of two-phase and three-phase solid propellants are established.According to the estimation theory proposed in this paper,the effective thermal conductivity and specific heat of solid propellants are predicted.The effect of AP or Al volume fraction is also discussed in this paper.展开更多
With the wide demands of cellular materials applications in aerospace and civil engineering,research effort sacrificed for this type of materials attains nowadays a higher level than ever before.This paper is focused ...With the wide demands of cellular materials applications in aerospace and civil engineering,research effort sacrificed for this type of materials attains nowadays a higher level than ever before.This paper is focused on the prediction methods of effective Young's modulus for periodical cellular materials.Based on comprehensive studies of the existing homogenization method(HM),the G-A meso-mechanics method(G-A MMM) and the stretching energy method(SEM) that are unable to reflect the size effect,we propose the bending energy method(BEM) for the first time,and a comparative study of these four methods is further made to show the generality and the capability of capturing the size effect of the BEM method.Meanwhile,the underlying characteristics of each method and their relations are clarified.To do this,the detailed finite element computing and existing experimental results of hexagonal honeycombs from the literature are adopted as the standard of comparison for the above four methods.Stretch and bending models of periodical cellular materials are taken into account,respectively for the comparison of stretch and flexural displacements resulting from the above methods.We conclude that the BEM has the strong ability of both predicting the effective Young's modulus and revealing the size effect.Such a method is also able to predict well the variations of structural displacements in terms of the cell size under stretching and bending loads including the non-monotonous variations for the hexagonal cell.On the contrary,other three methods can only predict the limited results whenever the cell size tends to be infinitely small.展开更多
This article studies the dielectric and piezoelectric behavior of unpoled and poled barium titanate(BaTiO_(3))polycrystals with oxygen vacancies.A phase field model is employed for BaTiO_(3) polycrystals,coupled with ...This article studies the dielectric and piezoelectric behavior of unpoled and poled barium titanate(BaTiO_(3))polycrystals with oxygen vacancies.A phase field model is employed for BaTiO_(3) polycrystals,coupled with the time-dependent Ginzburg–Landau theory and the oxygen vacancies diffusion,to demonstrate the interaction between oxygen vacancies and domain evolutions.To generate grain structures,the phase field model for grain growth is also used.The hysteresis loop and butterfly curve are predicted at room and high temperatures.The permittivity,and longitudinal and transverse piezoelectric constants of the BaTiO_(3) polycrystals are then examined for various grain sizes and oxygen vacancy densities.展开更多
基金Supported by the National Basic Research Program of China (Grant No. 2002CB412705)New Century Excellent Talents Program (Grant No. NCET-05- 0215)Laboratory Project of Beijing Science and Education Committee (Grant No. JD102900663)
文摘Reactive powder concrete (RPC) is a novel cement-based composite material with ultra-high strength. Embedding a certain amount of short steel fibers in the matrix can improve the RPC’s toughness and overcome the disadvantage of high brittle- ness. In this paper, a number of direct uniaxial tension tests have been carried out with ‘8-shape’ RPC200 specimens. The bond-slip process, mesoscopic structural variation and mechanical characteristics of a fiber pullout of the matrix have been investigated using the real-time SEM loading system and CCD observation tech- niques. The influence of the volume of embedded short steel fibers in matrix on the mesoscopic morphology of attachments on the surface of a pulled individual fiber, the initial cracking force, the ultimate pullout force, interfacial bond strength and the pullout rupture energy have been analyzed. A general formulation relating these quantities to the volume of fibers in matrix has been proposed. The components comprising the interfacial bond strength have been outlined. In addition, the con- tribution that fibers make to enhance and toughen the reactive powder concrete has been discussed. It is shown that there exists an optimal threshold of fiber volume ρv, opt =1.5% at which the bond performance of a fiber pullout of RPC be- haves best.
基金financially supported by the National Key R&D Program of China (No.2022YFC2903803)the National Natural Science Foundation of China (No.52130404)+3 种基金China Postdoctoral Science Foundation (No.2021M690011)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110161)Postdoctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing (No.2021BH011)the Fundamental Research Funds for the Central Universities (No.FRF-TP-22-112A1)
文摘The technology of cemented paste backfill(CPB)is an effective method for green mining.In CPB,mixing is a vital process aiming to prepare a paste that meets the non-stratification,non-segregation,and non-bleeding requirements.As a multiscale granular system,homogenization is one of the challenges in the paste-mixing process.Due to the high shearing,high concentration,and multiscale characteristics,paste exhibits complex rheological properties in the mixing process.An overview of the mesomechanics and structural evolution is presented in this review.The effects of various influencing factors on the paste's rheological properties were investigated,and the rheological models of the paste were outlined from the macroscopic and mesoscopic levels.The results show that the mechanical effects and structural evolution are the fundamental factors affecting the rheological properties of the paste.Existing problems and future development trends are presented to change the practice where the CPB process comes first and the theory lags.
基金Project(2011CB013504) supported by the National Basic Research Program of ChinaProjects(50911130366, 11172090) supported by the National Natural Science Foundation of ChinaProject supported by Central University Basic Research Special Fund, China
文摘The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. According to the results of laboratory direct shear test on the remolded samples, the soil particle parameters of numerical model based on in-situ particle size cumulative curves and 3D granular discrete element method were determined. Then, numerical experiments on different lithology, stone content and gradation composition were conducted. The results show that it is not a flat surface but a shear band that yields in the sample. The curve of particle velocity vs distance from the designed shear surface of test model that is taken as a datum plane in the vertical section of sample shows in "S" shape. The shear disturbance area is about twice the maximum diameter of stone blocks. The greater the stiffness of stone is, the rougher the shear surface is. The shear strength of outwash deposits is largely controlled by lithology and stone content, and the bite force between stone blocks is the root reason of larger friction angle. It is also shown that strain hardening and low shear dilatancy occur under high confining pressure as well as possibility of shear shrinkage. But it is easy to behave shear dilatation and strain softening under low confining pressure. The relationship between particle frictional coefficient and stone content presents an approximately quadratic parabola increase. The strain energy first increases and then drops with the increase of frictional energy. The cohesion increases with soil stiffness increasing but decreases with stone stiffness increasing. Numerical results are consistent with the laboratory test results of remolded samples, which indicate that this method can be a beneficial supplement to determine the parameters of engineering deposit bodies.
文摘In the present work, a computational frame- work is established for multiscale modeling and analysis of solid propellants. A packing algorithm, considering the am- monium perchlorate (AP) and aluminum (A1) particles as spheres or discs is developed to match the size distribution and volume fraction of solid propellants. A homogenization theory is employed to compute the mean stress and strain of a representative volume element (RVE). Using the mean results, a suitable size of RVE is decided. Without consider- ing the interfaces between particles and matrix, several nu- merical simulations of the relaxation of propellants are per- formed. The relaxation effect and the nonlinear mechanical behavior of propellants which are dependent on the applied loads are discussed. A new technology named surface-based cohesive behavior is proposed to describe the phenomenon of particle dewetting consisting of two ingredients: a damage initiation criterion and a damage evolution law. Several ex- amples considering contact damage behavior are computed and also nonlinear behavior caused by damaged interfaces is discussed in this paper. Furthermore the effects of the criti- cal contact stress, initial contact stiffness and contact failure distance on the damaged interface model have been studied.
基金funding by the National Natural Science Foundation of China(Nos.51474039 and 51404046)the Project of Shanxi Provincial Federation of Coalbed Methane Research(No.2013012010)the Science Foundation of North University of China(No.XJJ2016033)
文摘To accurately describe damage within coal, digital image processing technology was used to determine texture parameters and obtain quantitative information related to coal meso-cracks. The relationship between damage and mesoscopic information for coal under compression was then analysed. The shape and distribution of damage were comprehensively considered in a defined damage variable, which was based on the texture characteristic. An elastic-brittle damage model based on the mesostructure information of coal was established. As a result, the damage model can appropriately and reliably replicate the processes of initiation, expansion, cut-through and eventual destruction of microscopic damage to coal under compression. After comparison, it was proved that the predicted overall stress-strain response of the model was comparable to the experimental result.
基金supported by the National Basic Research Program of China (973 Program)(No.2006CB705401)
文摘Void closing from a spherical shape to a crack is investigated quantitatively in the present study. The constitutive relation of the Void-free matrix is assumed to obey the Norton power law. A representative volume element (RVE) which includes matrix and void is employed and a Rayleigh-Ritz procedure is developed to study the deformation-rates of a spherical void and a penny-shaped crack. Based on an approximate interpolation scheme, an analytical model for void closure in nonlinear plastic materials is established. It is found that the local plastic flows of the matrix material are the main mechanism of void deformation. It is also shown that the relative void volume during the deformation depends on the Norton exponent, on the far-field stress triaxiality, as well as on the far-field effective strain. The predictions of void closure using the present model are compared with the corresponding results in the literature, showing good agreement. The model for void closure provides a novel way for process design and optimization in terms of elimination of voids in billets because the model for void closure can easily be applied in the CAE analysis.
基金Funded by the National Natural Science Foundation of China(No.51574201)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(KLGP2015K006)the Scientific and Technical Youth Innovation Group(Southwest Petroleum University)(2015CXTD05)
文摘A new method regarding mesomechanics finite-element research is proposed to predict the peak shear strength of mudded intercalation materials on a mesoscopic scale. Based on geometric and mechanical parameters, along with the strain failure criteria obtained by sample's deformation characteristics, uniaxial compression tests on the sample were simulated through a finite-element model, which yielded values consistent with the data from the laboratory uniaxial compression tests, implying that the method is reasonable. Based on this model, a shear test was performed to calculate the peak shear strength of the mudded intercalation, consistent with values reported in the literature, thereby providing a new approach for investigating the mechanical properties of mudded intercalation materials.
基金Projects(51309089,11202063)supported by the National Natural Science Foundation of ChinaProject(2013BAB06B01)supported by the National High Technology Research and Development Program of China+1 种基金Project(2015CB057903)supported by the National Basic Research Program of ChinaProject(BK20130846)supported by Natural Science Foundation of Jiangsu Province,China
文摘For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital imaging, a simulated annealing algorithm is adopted to expand the meso-structural features of deposit bodies in 3D. The construction of the 3D meso-structure of a deposit body is achieved, and then the particle flow analysis program PFC3 D is used to simulate the mechanical properties of the deposit body. It is shown that with a combination of the simulated annealing algorithm and the statistical feature functions, the randomness and heterogeneity of the rock distribution in the 3D inner structure of deposit body medium can be realized, and the reconstructed structural features of the deposit medium can match the features of the digital images well. The spatial utilizations and the compacting effects of the body-centered cubic, hexagonal close and face-centered packing models are high, so these structures can be applied in the simulations of the deposit structures. However, the shear features of the deposit medium vary depending on the different model constructive modes. Rocks, which are the backbone of the deposit, are the factors that determine the shear strength and deformation modulus of the deposit body. The modeling method proposed is useful for the construction of 3D meso-scope models from 2D meso-scope statistics and can be used for studying the mechanical properties of mixed media, such as deposit bodies.
基金Project(2005CB623704) supported bythe National Basic Research Programof China Project(NCET-04-0753) supportedby the New Century Talented Professionals Programof Chinese Education Ministry
文摘Based on tensile cracking of SiC_p and decohesion of the interface between SiC_p and Al matrix, a mesomechanical model for tensile deformation of SiC_p/Al composites was developed. The microcracks and multi-scale second phase particles were assumed to distribute homogeneously. A nonlinear quantitative relationship between tensile ductility and volume fraction of SiC_p was established based on the model. The tensile ductility values of 2xxx SiC_p/Al and 6xxx SiC_p/Al composites predicted by the model are in good agreement with the experimental values. The analysis of effects of multi-scale second phases on the ductility of the composites indicates that the ductility decreases with the increase of the volume fraction of SiC_p and precipitates in Al matrix and is almost independent of constituents and dispersoids.
基金Sponsored by the National Natural Science Foundation of China.
文摘In this paper,scanning acoustic microscope(SAM) was used to obtain some characteristic photographs which explain the mesoscopic information of several cracked specimens.New results on subsurface information of steel,nickel and aluminium were presented.Plastic deformation and crack initiation were observed and analysed.The length of crack propagation was measured.SAM is particularly suited to the study of many mesoscopic phenomena in material science because it can image mesoscopic subsurface feature without sectioning.It is revealed that SAM has a bright future in the field of mesomechanics.
基金Supported by the National Natural Science Foundation of China(51474224)The Shenzhen Peacock Plan(KQTD2017033114582189)The Shenzhen Science and Technology Innovation Committee(JCYJ20170817152743178)
文摘The real pores in digital cores were simplified into three abstractive types,including prolate ellipsoids,oblate ellipsoids and spheroids.The three-dimensional spheroidal-pore model of digital core was established based on mesoscopic mechanical theory.The constitutive relationship of different types of pore microstructure deformation was studied with Eshelby equivalent medium theory,and the effects of pore microstructure on pore volume compressibility under elastic deformation conditions of single and multiple pores of a single type and mixed types of pores were investigated.The results showed that the pore volume compressibility coefficient of digital core is closely related with porosity,pore aspect ratio and volumetric proportions of different types of pores.(1)The compressibility coefficient of prolate ellipsoidal pore is positively correlated with the pore aspect ratio,while that of oblate ellipsoidal pore is negatively correlated with the pore aspect ratio.(2)At the same mean value of pore aspect ratio satisfying Gaussian distribution,the more concentrated the range of pore aspect ratio,the higher the compressibility coefficient of both prolate and oblate ellipsoidal pores will be,and the larger the deformation under the same stress condition.(3)The pore compressibility coefficient increases with porosity.(4)At a constant porosity value,the higher the proportion of oblate ellipsoidal and spherical pores in the rock,the more easier for the rock to deform,and the higher the compressibility coefficient of the rock is,while the higher the proportion of prolate ellipsoidal pores in the rock,the more difficult it is for rock to deform,and the lower the compressibility coefficient of the rock is.By calculating pore compressibility coefficient of ten classical digital rock samples,the presented analytical elliptical-pore model based on real pore structure of digital rocks can be applied to calculation of pore volume compressibility coefficient of digital rock sample.
文摘A method for the estimation of thermophysical properties of two-and multi-phase solid propellants is proposed in this paper.The theoretical solutions for thermal conductivity and specific heat of a homogeneous solid propellant cell in the transient thermal conductivity process are deduced on the condition that one boundary of the cell is heated while others are adiabatic.A homogenization theory and the finite element method are employed to compute the mean temperature and heat flux of a representative volume element(RVE).According to the mean results and the theoretical solutions,the effective thermal conductivity and specific heat of solid propellant can be estimated.A packing algorithm,considering the solid particles(ammonium perchlorate(AP)or aluminum)as spheres or discs,is used to match the size distribution and volume fraction of solid propellants,and some mesoscopic models of two-phase and three-phase solid propellants are established.According to the estimation theory proposed in this paper,the effective thermal conductivity and specific heat of solid propellants are predicted.The effect of AP or Al volume fraction is also discussed in this paper.
基金Supported by the National Natural Science Foundation of China (Grant No. 50775184)the National Basic Research Program of China (Grant No. 2006CB601-205)+2 种基金the Aeronautical Science Foundation (Grant No. 2008ZA53007)the Doctorate Foundation of Northwestern Polytechnical University (Grant No. CX200610)the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University (Grant No. 30715003)
文摘With the wide demands of cellular materials applications in aerospace and civil engineering,research effort sacrificed for this type of materials attains nowadays a higher level than ever before.This paper is focused on the prediction methods of effective Young's modulus for periodical cellular materials.Based on comprehensive studies of the existing homogenization method(HM),the G-A meso-mechanics method(G-A MMM) and the stretching energy method(SEM) that are unable to reflect the size effect,we propose the bending energy method(BEM) for the first time,and a comparative study of these four methods is further made to show the generality and the capability of capturing the size effect of the BEM method.Meanwhile,the underlying characteristics of each method and their relations are clarified.To do this,the detailed finite element computing and existing experimental results of hexagonal honeycombs from the literature are adopted as the standard of comparison for the above four methods.Stretch and bending models of periodical cellular materials are taken into account,respectively for the comparison of stretch and flexural displacements resulting from the above methods.We conclude that the BEM has the strong ability of both predicting the effective Young's modulus and revealing the size effect.Such a method is also able to predict well the variations of structural displacements in terms of the cell size under stretching and bending loads including the non-monotonous variations for the hexagonal cell.On the contrary,other three methods can only predict the limited results whenever the cell size tends to be infinitely small.
基金This work was supported by JSPS KAKENHI Grant Number 16H04227.
文摘This article studies the dielectric and piezoelectric behavior of unpoled and poled barium titanate(BaTiO_(3))polycrystals with oxygen vacancies.A phase field model is employed for BaTiO_(3) polycrystals,coupled with the time-dependent Ginzburg–Landau theory and the oxygen vacancies diffusion,to demonstrate the interaction between oxygen vacancies and domain evolutions.To generate grain structures,the phase field model for grain growth is also used.The hysteresis loop and butterfly curve are predicted at room and high temperatures.The permittivity,and longitudinal and transverse piezoelectric constants of the BaTiO_(3) polycrystals are then examined for various grain sizes and oxygen vacancy densities.