期刊文献+
共找到17,616篇文章
< 1 2 250 >
每页显示 20 50 100
Synthesis of spherical nano-ZSM-5 zeolite with intergranular mesoporous for alkylation of ethylbenzene with ethanol to produce m-diethylbenzene
1
作者 Siyue Wang Jinhong Li +5 位作者 Qingxin Xu Shengjie Song Yu'ni Jiang Lidong Chen Xin Shi Weiguo Cheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期298-309,共12页
Catalytic synthesis of m-diethylbenzene(m-DEB)through alkylation of ethylbenzene(EB)may be a promising alternative route in comparison with traditional rectification of mixed DEB,for which the top priority is to devel... Catalytic synthesis of m-diethylbenzene(m-DEB)through alkylation of ethylbenzene(EB)may be a promising alternative route in comparison with traditional rectification of mixed DEB,for which the top priority is to develop efficient and stable heterogeneous catalysts.Here,the spherical nano-ZSM-5 zeolite with abundant intergranular mesoporous is synthesized by the seed-mediated growth method for alkylation of EB with ethanol to produce m-DEB.The results show that the spherical nano-ZSM-5 zeolite exhibits better stability and higher alkylation activity at a lower temperature than those of commercial micropore ZSM-5.And then,the spherical nano-ZSM-5 is further modified by La_(2)O_(3) through acid treatment followed by immersion method.The acid treatment causes nano-ZSM-5 to exhibit the increased pore size but decreased the acid sites,and subsequent La_(2)O_(3) loading reintroduces the weak acid sites.As a result,the HNO_(3)-La_(2)O_(3)-modified catalyst exhibits a slight increase in EB conversion and DEB yield in comparison with unmodified one,and meanwhile,it still maintains high m-DEB selectivity.The catalyst after acid treatment achieves higher catalytic stability besides maintaining the high alkylation activity of EB with ethanol.The present study on the spherical nano-HZSM-5 zeolite and its modification catalyst with excellent alkylation ability provides new insights into the production of mDEB. 展开更多
关键词 zeolite Modification Alkylation reaction m-diethylbenzene Catalyst FIXED-BED
下载PDF
Synthesis of mesoporous high‐silica zeolite Y and their catalytic cracking performance 被引量:4
2
作者 Wenhao Cui Dali Zhu +7 位作者 Juan Tan Nan Chen Dong Fan Juan Wang Jingfeng Han Linying Wang Peng Tian Zhongmin Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第7期1945-1954,共10页
Mesoporous high‐silica zeolite Y with advantages of improved accessibility of acid sites and mass transport properties is highly desired catalytic materials for oil refinery,fine chemistry and emerg‐ing biorefinery.... Mesoporous high‐silica zeolite Y with advantages of improved accessibility of acid sites and mass transport properties is highly desired catalytic materials for oil refinery,fine chemistry and emerg‐ing biorefinery.Here,we report the direct synthesis of mesoporous high‐silica zeolite Y(named MSY,SiO_(2)/Al2O_(3)≥9.8)and their excellent catalytic cracking performance.The obtained MSY mate‐rials are mesoporous single crystals with octahedral morphology,abundant mesoporosity and ex‐cellent(hydro)thermal stability.Both the acid concentration and acid strength of H‐form MSY are obviously higher than those of commercial ultra‐stable Y(USY),which should be attributed to the uniform Al distribution of MSY zeolite.The H‐MSY displays an obviously reduced deactivation rate and improved catalytic activity in the cracking reaction of bulky 1,3,5‐triisopropylbenzene(TIPB),as compared with its mesoporogen‐free counterpart and USY.In addition,H‐MSY was investigated as catalyst for the cracking of industrial heavy oil.The MSY‐based catalyst(after aging at 800 oC in 100%steam for 17 h)exhibits superior conversion(7.64%increase)and gasoline yield(16.37%increase)than industrial fluid catalytic cracking(FCC)catalyst under the investigated conditions. 展开更多
关键词 mesoporous zeolite FAU SYNTHESIS High‐silica zeolite Y Fluid catalytic cracking
下载PDF
Hydrothermal Synthesis and Properties of Y-zeolite-containing Composite Material with Micro/mesoporous Structure 被引量:3
3
作者 Zhou Jihong Min Enze +3 位作者 Shu Xingtian Zong Baoning Yang Haiying Luo Yibin (State Key Laboratory of Catalytic Material and Reaction Engineering,Research Institute of Petroleum Processing,SINOPEC,Beijing 100083) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2010年第1期1-4,共4页
A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods.... A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods. Evaluation of catalytic activity of both the commercial Y-zeolite and the novel Y-zeolite-containing composite material was carried out in the pulse micro-chromatography platform with two probe molecules of different molecular sizes: VGO feedstock and 1,3,5 tri-isopropyl benzene. It was found that the Y-zeolite-containing composite material was richer in external surface and meso-/macro-pores; the Y-zeolite-containing composite material demonstrated a smaller rate of deactivation compared to the commercial Y-zeolite. 展开更多
关键词 FAUJASITE hydrothermal synthesis Y-zeolite-containing composite material micro/mesoporous structure kaolin
下载PDF
Preparation of Mesoporous ZSM-5 Zeolite under Double Ester Base Long Carbon Chains Organosilane Quaternary Ammonium Salt Template Agent
4
作者 QIAO Wenjua LIU Dongliang 《Journal of Donghua University(English Edition)》 EI CAS 2018年第5期380-383,共4页
The pore sizes of traditional zeolites are in the range of0. 3-1. 5 nm,which strongly hinder the diffusion of large reactant and product molecules within the zeolite pores. To compensate for it,we tried to create meso... The pore sizes of traditional zeolites are in the range of0. 3-1. 5 nm,which strongly hinder the diffusion of large reactant and product molecules within the zeolite pores. To compensate for it,we tried to create mesopores in traditional microporous zeolites and retain all advantages of microporous zeolites. Mesoporous Zeolite Socony Mobile-Five( ZSM-5) zeolite was synthesized by a new double ester base long carbon chains organosilane quaternary ammonium salt as the soft template agent in hydrothermal method.The structure of the acquired zeolite crystals was confirmed by fieldemission scanning electron microscopy( FE-SEM), transmission electron microscopy( TEM), nitrogen adsorption-desorption measurements and X-ray diffraction( XRD),which indicated that their structure had the same characteristics as traditional ZSM-5 zeolites. Compared with traditional ZSM-5 zeolite,there were 4 nm and 15 nm mesopores in the crystal. The prepared hierarchical porous ZSM-5 zeolite was expected to be effective catalytic materials for chemical reactions involving large molecules. 展开更多
关键词 mesoporous zeolite Socony Mobile-Five(ZSM-5)zeolite DOUBLE long carbon chains ORGANOSILANE QUATERNARY AMMONIUM salt
下载PDF
Cubic Mesoporous Aluminosilicate with Primary Structure Units of Zeolite Beta in the Pore Wall
5
作者 Gong LI Qiu Bin KAN +1 位作者 Tong Hao WU Jia Hui HUANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2003年第6期637-640,共4页
Mesoporous aluminosilicate with cubic ordered structure was synthesized by two-step crystallization, which showed stronger acid sites and more effective activity for catalytic alkylation of 2, 4-ditert-butylphenol wit... Mesoporous aluminosilicate with cubic ordered structure was synthesized by two-step crystallization, which showed stronger acid sites and more effective activity for catalytic alkylation of 2, 4-ditert-butylphenol with tert-butanol than conventional H-AlMCM-48 materials. 展开更多
关键词 Cubic mesostructure two-step crystallization primary structure units zeolite beta catalysis.
下载PDF
The structure-directing role of heterologous seeds in the synthesis of zeolite 被引量:2
6
作者 Haoyang Zhang Binyu Wang Wenfu Yan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期792-801,共10页
Zeolites have been widely used as catalysts,ion-exchangers,and adsorbents in chemical industries,detergent industry,steel industry,glass industry,ceramic industry,medical and healthfield,and environmentalfield,and recen... Zeolites have been widely used as catalysts,ion-exchangers,and adsorbents in chemical industries,detergent industry,steel industry,glass industry,ceramic industry,medical and healthfield,and environmentalfield,and recently applied in energy storage.Seed-assisted synthesis is a very effective approach in promoting the crystallization of zeolites.In some cases,the target zeolite cannot be formed in the absence of seed zeolite.In homologous seed-assisted synthesis,the structure of the seed zeolite is the same to that of the target zeolite,while the structure of the seed zeolite is different to that of the target zeolite in the heterologous seed-assisted synthesis.In this review,we briefly summarized the heterologous seed-assisted syntheses of zeolites and analyzed the structure-directing effect of heterologous seeds and surveyed the“common composite building units(CBUs)hypothesis”and the“common secondary building units(SBUs)hypothesis”.However,both hypotheses cannot explain all observations on the heterologous seed-assisted syntheses.Finally,we proposed that the formation of the target zeolite does need nuclei with the structure of target zeolite and the formation of the nuclei of the target zeolite can be promoted by either the undissolved seed crystals with the same CBUs or SBUs to the target zeolite or by the facilitated appropriate distribution of the specific building units due to the presence of the heterologous seed that does not have any common CBUs and SBUs with the target zeolite. 展开更多
关键词 zeolite Heterologous seed SYNTHESIS Structure-directing effect
下载PDF
Facile synthesis of hierarchical NaX zeolite from natural kaolinite for efficient Knoevenagel condensation 被引量:2
7
作者 Wen Xiao Peng Dong +6 位作者 Chan Wang Jingdong Xu Tiesen Li Haibo Zhu Tinghai Wang Renwei Xu Yuanyuan Yue 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期75-84,共10页
Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficien... Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficiency.Herein,we explore an economic and environmentally friendly method for synthesizing hierarchical NaX zeolite that exhibits improved catalytic performance in the Knoevenagel condensation reaction for producing the useful fine chemical 2-cyano-3-phenylacrylate.The synthesis was achieved via a low-temperature activation of kaolinite and subsequent in-situ transformation strategy without any template or seed.Systematic characterizations reveal that the synthesized NaX zeolite has both intercrystalline and intra-crystalline mesopores,smaller crystal size,and larger external specific surface area compared to commercial NaX zeolite.Detailed mechanism investigations show that the inter-crystalline mesopores are generated by stacking smaller crystals formed from in-situ crystallization of the depolymerized kaolinite,and the intra-crystalline mesopores are inherited from the pores in the depolymerized kaolinite.This synthesis strategy provides an energy-saving and effective way to construct hierarchical zeolites,which may gain wide applications in fine chemical manufacturing. 展开更多
关键词 Hierarchical NaX zeolite Template-free synthesis Natural kaolinite Knoevenagel condensation
下载PDF
Dealuminated Hβ zeolite for selective conversion of fructose to furfural and formic acid 被引量:1
8
作者 Rui Li Qixuan Lin +3 位作者 Junli Ren Xiaobao Yang Yingxiong Wang Lingzhao Kong 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期311-320,共10页
The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural... The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural using Hβ zeolite modified by organic acids for dealuminization to regulate its textural and acidic properties. It was found that citric acid-dealuminized Hβ zeolite possessed high specific surface areas, wide channels and high Brønsted acid amount, which facilitated the selective conversion of fructose to furfural with a maximum yield of 76.2% at433 K for 1 h in the γ-butyrolactone(GBL)-H_(2)O system, as well as the concomitant formation of 83.0% formic acid. The^(13)C-isotope labelling experiments and the mechanism revealed that the selective cleavage of C1–C2 or C5–C6 bond on fructose was firstly occurred to form pentose or C5 intermediate by weak Brønsted acid, which was then dehydrated to furfural by strong Brønsted acid. Also this dealuminized Hβ catalyst showed the great recycling performance and was active for the conversion of glucose and mannose. 展开更多
关键词 FRUCTOSE Dealuminated-Hb zeolite Selective conversion FURFURAL
下载PDF
Stable immobilization of lithium polysulfides using three-dimensional ordered mesoporous Mn_(2)O_(3) as the host material in lithium-sulfur batteries 被引量:1
9
作者 Sung Joon Park Yun Jeong Choi +6 位作者 Hyun-seung Kim Min Joo Hong Hongjun Chang Janghyuk Moon Young-Jun Kim Junyoung Mun Ki Jae Kim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期99-112,共14页
Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the c... Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs. 展开更多
关键词 host material lithium-sulfur battery ordered mesoporous structure shuttle effect transition-metal oxides
下载PDF
Enhanced activation of peroxymonosulfate by Fe/N co-doped ordered mesoporous carbon with dual active sites for efficient removal of m-cresol 被引量:1
10
作者 Donghui Li Wenzhe Wu +6 位作者 Xue Ren Xixi Zhao Hongbing Song Meng Xiao Quanhong Zhu Hengjun Gai Tingting Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期130-144,共15页
The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,th... The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,the complexation of N elements in urea could anchor Fe,and the formation of C3N4during urea pyrolysis could also prevent migration and aggregation of Fe species,which jointly improve the dispersion and stability of Fe.The FeN4sites and highly dispersed Fe nanoparticles synergistically trigger the dual-site peroxymonosulfate (PMS) activation for highly efficient m-cresol degradation,while the ordered mesoporous structure of the catalyst could improve the mass transfer rate of the catalytic process,which together promote catalytic degradation of m-cresol by PMS activation.Reactive oxygen species (ROS) analytic experiments demonstrate that the system degrades m-cresol by free radical pathway mainly based on SO_(4)^(-)·and·OH,and partially based on·OH as the active components,and a possible PMS activation mechanism by 5Fe-50 for m-cresol degradation was proposed.This study can provide theoretical guidance for the preparation of efficient and stable catalysts for the degradation of organic pollutants by activated PMS. 展开更多
关键词 Degradation PEROXYMONOSULFATE Fe(II)/Fe(III)/FeN4 Ordered mesopores carbon Catalyst Radical
下载PDF
EDTA-LDH/zeolite制备及其对重金属离子的吸附
11
作者 谢修鑫 廖立兵 +2 位作者 雷馨宇 王丽娟 唐晓尉 《硅酸盐通报》 CAS 北大核心 2024年第1期370-382,共13页
用水热法和焙烧还原法两步合成了乙二胺四乙酸-水滑石/沸石(EDTA-LDH/zeolite)复合材料,并将其用于去除水溶液中的Cd^(2+)、Pb^(2+)、Cu^(2+),系统研究不同条件下EDTA-LDH/zeolite对单一及混合重金属离子溶液中Cd^(2+)、Pb^(2+)、Cu^(2+... 用水热法和焙烧还原法两步合成了乙二胺四乙酸-水滑石/沸石(EDTA-LDH/zeolite)复合材料,并将其用于去除水溶液中的Cd^(2+)、Pb^(2+)、Cu^(2+),系统研究不同条件下EDTA-LDH/zeolite对单一及混合重金属离子溶液中Cd^(2+)、Pb^(2+)、Cu^(2+)的吸附效果与吸附机制。结果表明,当EDTA-LDH/zeolite投加量为0.05 g、重金属离子浓度为1500 mg/L、pH值为6.5、吸附时间为24 h时,EDTA-LDH/zeolite吸附性能最佳。重金属离子间存在竞争吸附,EDTA-LDH/zeolite对Cd^(2+)、Pb^(2+)、Cu^(2+)的最大吸附容量分别为65.33、98.35和108.51 mg/g。去除过程中沉淀作用、表面络合、螯合反应等多种机制协同作用,去除行为均符合Langmuir等温模型与拟二阶动力学模型。 展开更多
关键词 LDH 沸石 EDTA 重金属离子 吸附性能
下载PDF
Fabrication of a nano-sized ZSM-5 zeolite with intercrystalline mesopores for conversion of methanol to gasoline 被引量:5
12
作者 Tingjun Fu Jiangwei Chang +1 位作者 Juan Shao Zhong Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期139-146,共8页
Carbon deposition during methanol to hydrocarbons leads to the quick deactivation of ZSM-5 catalyst and it is one of the major problems for this technology. Decreasing the crystal size or introducing mesopores into ZS... Carbon deposition during methanol to hydrocarbons leads to the quick deactivation of ZSM-5 catalyst and it is one of the major problems for this technology. Decreasing the crystal size or introducing mesopores into ZSM-5 zeolites can improve its diffusion property and decrease the coke formation. In this paper, nano-sized ZSM-5 zeolite with intercrystalline mesopores combining the mesoporous and nano sized structure was fabricated. For comparison, the mesoporous ZSM-5 and nano-sized ZSM-5 were also prepared. These catalyst samples were characterized by XRD, BET, NH3-TPD, TEM, Py-IR and TG techniques and used on the conversion of methanol to gasoline in a fixed-bed reactor at T=405 degrees C, WHSV =4.74 h(-1) and P=1.0 MPa. It was found that the external surface area of the nano-sized ZSM-5 zeolite with intercrystalline mesopores reached 104 m(2)/g, larger than that of mesoporous ZSM-5 (66 m(2)/g) and nano sized ZSM-5 (76 m(2)/g). Catalytic lifetime of the nano-sized ZSM-5 zeolite with intercrystalline mesopores was 93 h, which was only longer than that of mesoporous ZSM-5 (86 h), but shorter than that of nano sized ZSM-5 (104 h). Strong acidity promoted the coke formation and thus decreased the catalytic lifetime of the nano-sized ZSM-5 zeolite with intercrystalline mesopores though it presented large external surface that could improve the diffusion property. The special zeolite catalyst was further dealuminated to decrease the strong acidity. After this, its coke formation rate was slowed and catalytic lifetime was prolonged to 106 h because of the large external surface area and decreased weak acidity. This special structural zeolite is a potential catalyst for methanol to gasoline reaction. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 ZSM-5 Crystal size mesoporE ACIDITY Methanol to gasoline
下载PDF
Creating mesopores in ZSM-48 zeolite by alkali treatment: Enhanced catalyst for hydroisomerization of hexadecane 被引量:2
13
作者 Miao Zhang Lei Wang +2 位作者 Yujing Chen Qiumin Zhang Changhai Liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第3期539-544,共6页
ZSM-48 zeolites with various Si/Al ratios were hydrothermally synthesized in the H;N(CH;);NH;(HDA)-containing media. The obtained samples were highly crystallized with minor mixed phases as evidenced by X-ray powd... ZSM-48 zeolites with various Si/Al ratios were hydrothermally synthesized in the H;N(CH;);NH;(HDA)-containing media. The obtained samples were highly crystallized with minor mixed phases as evidenced by X-ray powder diffraction(XRD). The alkaline treated ZSM-48 zeolites maintained its structure under different concentrations of Na OH aqueous solution. Micropores remained unchanged while mesopores with wide pore size distribution formed after the alkaline treatment. The surface area increased from 228 to 288 m;/g. The Br?nsted acid sites had little alteration while an obvious increase of Lewis acid sites was observed. The hydroisomerization of hexadecane was performed as the model reaction to test the effects of the alkali treatment. The conversion of hexadecane had almost no change, which was attributed to the preservation of the Br?nsted acid sites. While high selectivity to iso-hexadecane with an improved iso to normal ratio of alkanes was due to the mesopore formation and improved diffusivity. 展开更多
关键词 ZSM-48 Alkali treatment HYDROISOMERIZATION mesoporE HEXADECANE
下载PDF
Production of linear alkylbenzene over Ce containing Beta zeolites
14
作者 Shiqi Zhang Shengzhi Gan +1 位作者 Baoyu Liu Jinxiang Dong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期220-227,共8页
Ce-encapsulated Beta zeolite was synthesized by a one-pot hydrothermal method with citric acid complexing Ce in the absence of Na species.Additional citric acid can effectively prevent the deposition of Ce species dur... Ce-encapsulated Beta zeolite was synthesized by a one-pot hydrothermal method with citric acid complexing Ce in the absence of Na species.Additional citric acid can effectively prevent the deposition of Ce species during the hydrothermal synthesis of zeolites,leading to uniform distribution of Ce cluster in the framework of Beta zeolites.Moreover,the sodium-free synthesis system resulted that the Brønsted acid sites were mainly located on the straight channels and external surface of Beta zeolites,improving the utilization of Brønsted acid sites.In addition,Ce encapsulated Beta zeolites showed enhanced activity and robust stability in the alkylation of benzene with 1-dodecene based on the synergistic effect between Ce species and Brønsted acid sites,which pave the way for its practical application in the production of alkylbenzene. 展开更多
关键词 Beta zeolites CATALYSIS ALKYLATION Long-chain olefins
下载PDF
Development and Catalytic Cracking Performance of Ultrastable Y Zeolite Rich in Secondary Pores
15
作者 Li Jiaxing Wang Shengji +3 位作者 Sha Hao Wang Juan Zhou Lingping Wang Lixia 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期13-21,共9页
A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first t... A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first time in the world. The porestructure characteristics of the NSZ zeolite prepared for industrial use were analyzed and characterized using BET. The resultsindicate a significant increase in the secondary pore volume of NSZ zeolite compared to the existing ultra-stable zeolite HSZ-5, which is produced through a conventional gas-phase method. The average secondary pore volume to total pore volume ratioin NSZ zeolite was found to be 58.96% higher. The catalytic cracking performance of NSZ zeolite was evaluated. The resultsshowed that the NSC-LTA catalyst, with NSZ as the active component, outperformed the HSC-LTA catalyst with HSZ-5 zeolitein terms of obtaining more high-value products (gasoline and liquefied petroleum gas) during the hydrogenated light cycle oilprocessing. Additionally, the NSC-LTA catalyst showed a significant improvement in coke selectivity. 展开更多
关键词 GAS-PHASE ultra-stable zeolite CATALYST catalytic cracking
下载PDF
Preparation of a zeolite-palladium composite membrane for hydrogen separation:Influence of zeolite film on membrane stability
16
作者 Hongmei Wu Xinyu Liu Yu Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期44-52,共9页
With the development of hydrogen energy,palladium-based membranes have been widely used in hydrogen separation and purification.However,the poor chemical stability of palladium composite membranes limits their commerc... With the development of hydrogen energy,palladium-based membranes have been widely used in hydrogen separation and purification.However,the poor chemical stability of palladium composite membranes limits their commercial applications.In this study,a zeolite-palladium composite membrane with a sandwich-like structure was obtained by using a TS-1 zeolite film grown on the surface of palladium membrane.The membrane microstructure was characterized by SEM and EDX.The effects of the TS-1 film on the hydrogen permeability and stability of palladium composite membrane were investigated in details.Benefited from the protection of the TS-1 zeolite film,the stability of palladium composite membrane was enhanced.The results indicate that the TS-1-Pd composite membrane was stable after eight cycles of the temperature exchange cycles between 773 K and 623 K.Especially,the loss of hydrogen permeance for TS-1-Pd composite membrane was much smaller than that of the pure palladium membrane when the membrane was tested in the presence of C3H6atmosphere.It indicated that the TS-1-Pd composite membrane had better chemical stability in comparison with pure palladium membrane,owing to its sandwich-like structure.This work provides an efficient way for the deposition of zeolite film on palladium membrane to enhance the membrane stability. 展开更多
关键词 Palladium membrane zeolite film Hydrogen separation STABILITY
下载PDF
A concise review on surface and structural modification of porous zeolite scaffold for enhanced hydrogen storage
17
作者 B.A.Abdulkadir R.S.R.Mohd Zaki +4 位作者 A.T.Abd Wahab S.N.Miskan Anh-Tam Nguyen Dai-Viet N.Vo H.D.Setiabudi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期33-53,共21页
Investigating zeolites as hydrogen storage scaffolds is imperative due to their porous nature and favorable physicochemical properties.Nevertheless,the storage capacity of the unmodified zeolites has been rather unsat... Investigating zeolites as hydrogen storage scaffolds is imperative due to their porous nature and favorable physicochemical properties.Nevertheless,the storage capacity of the unmodified zeolites has been rather unsatisfactory(0.224%-1.082%(mass))compared to its modified counterpart.Thus,the contemporary focus on enhancing hydrogen storage capacities has led to significant attention towards the utilization of modified zeolites,with studies exploring surface modifications through physical and chemical treatments,as well as the integration of various active metals.The enhanced hydrogen storage properties of zeolites are attributed to the presence of aluminosilicates from alkaline and alkaline-earth metals,resulting in increased storage capacity through interactions with the charge density of these aluminosilicates.Therefore,there is a great demand to critically review their role such as well-defined topology,pore structure,good thermal stability,and tunable hydrophilicity in enhanced hydrogen storage.This article aimed to critically review the recent research findings based on modified zeolite performance for enhanced hydrogen storage.Some of the factors affecting the hydrogen storage capacities of zeolites that can affect the rate of reaction and the stability of the adsorbent,like pressure,structure,and morphology were studied,and examined.Then,future perspectives,recommendations,and directions for modified zeolites were discussed. 展开更多
关键词 zeolites Hydrogen storage Surface modification Adsorption Active metal
下载PDF
Phosphotungstic acid immobilized on amino-functionalized TS-1 zeolite as a solid acid catalyst for the synthesis of tributyl citrate
18
作者 Pei Li Bianfang Shi +4 位作者 Junyao Shen Ran Cui Wenze Guo Ling Zhao Zhenhao Xi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期199-210,共12页
The amino-functionalization of TS-1 zeolite followed by immobilization of phosphotungstic acid(HPW)was presented to prepare a strong solid acid catalyst for the synthesis of bio-based tributyl citrate from the esterif... The amino-functionalization of TS-1 zeolite followed by immobilization of phosphotungstic acid(HPW)was presented to prepare a strong solid acid catalyst for the synthesis of bio-based tributyl citrate from the esterification of citric acid and n-butanol.γ-Aminopropyltriethoxysilane(APTES)was first grafted on the TS-1 zeolite via the condensation reactions with surface hydroxyl groups,and subsequently the HPW was immobilized via the reaction between the amino groups and the protons from HPW-forming strong ionic bonding.The Keggin structure of HPW and MFI topology of TS-1 zeolite were well maintained after the modifications.The amino-functionalization generated abundant uniformly distributed active sites on TS-1 for HPW immobilization,which promoted the dispersity,abundance,as well as the stability of the acid sites.The tetrahedrally coordinated framework titanium and non-framework titania behaved as weak Lewis acid sites,and the protons from the immobilized HPW acted as the moderate or strong Brønsted acid sites.An optimized TBC yield of 96.2%(mol)with a conversion of-COOH of 98.1%(mol)was achieved at 150℃for 6 h over the HPW immobilized on amino-functionalized TS-1.The catalyst exhibited good stability after four consecutive reaction runs,where the activity leveled off at still a relatively high level after somewhat deactivation possibly caused by the leaching of a small portion of weakly anchored APTES or HPW. 展开更多
关键词 AMINO-FUNCTIONALIZATION Phosphotungstic acid TS-1 zeolite ESTERIFICATION Tributyl citrate
下载PDF
High-silica faujasite zeolite-tailored metal encapsulation for the low-temperature production of pentanoic biofuels
19
作者 Wenhao Cui Yuanshuai Liu +11 位作者 Pengfei Guo Zhijie Wu Liqun Kang Huawei Geng Shengqi Chu Linying Wang Dong Fan Zhenghao Jia Haifeng Qi Wenhao Luo Peng Tian Zhongmin Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期552-560,I0012,共10页
Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulatio... Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulation of metal nanoclusters into a high-silica zeolite Y in particular with good structural integrity still remains a significant challenge.Herein,we have constructed Ru nanoclusters(~1 nm)encapsulated inside a high-silica zeolite Y(SY)with a SiO_(2)/Al_(2)O_(3) ratio(SAR)of 10 via a cooperative strategy for direct zeolite synthesis and a consecutive impregnation for metal encapsulation.Compared with the benchmark Ru/H-USY and other analogues,the as-prepared Ru/H-SY markedly boosts the yields of pentanoic biofuels and stability in the direct hydrodeoxygenation of biomass-derived levulinate even at a mild temperature of 180℃,which are attributed to the notable stabilization of transition states by the enhanced acid accessibility and properly sized constraints of zeolite cavities owing to the good structural integrity. 展开更多
关键词 High-silica zeolite Y Metal encapsulation Bifunctional catalysis HYDRODEOXYGENATION Biofuels
下载PDF
OSDA-free synthesis of FeZSM-22 zeolite from natural minerals for n-octane hydroisomerization
20
作者 Tiesen Li Ting Chen +5 位作者 Yinghui Ye Peng Dong TinghaiWang Qingyan Cui Chan Wang Yuanyuan Yue 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期51-59,共9页
A seed-directed approach to synthesizing Fe ZSM-22 zeolite without organic structure directing agent(OSDA)was developed by using Fe-rich diatomite as all aluminum and iron sources.The Fe ZSM-22zeolite with optimal cry... A seed-directed approach to synthesizing Fe ZSM-22 zeolite without organic structure directing agent(OSDA)was developed by using Fe-rich diatomite as all aluminum and iron sources.The Fe ZSM-22zeolite with optimal crystallinity and purity can be obtained by systematically adjusting feed composition and synthesis conditions.Characterizations show that Fe ZSM-22 zeolite synthesized with OSDA-free owns high crystallinity,obvious thin needle-shaped morphology and high Bronsted/Lewis acid ratio.Significantly,when used for n-octane hydroisomerization reaction,its derived catalyst exhibits the best catalytic performance reflected by the highest selectivity to C_(8)isomers compared to the two reference catalysts prepared based on a Fe-containing and a Fe-free ZSM-22 synthesized through an OSDA-directed route from natural diatomite and conventional chemicals,respectively.This work provides an alternative route to sustainably synthesizing heteroatomic zeolites with high performance. 展开更多
关键词 FeZSM-22 zeolite OSDA-free synthesis Natural minerals n-octane hydroisomerization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部