Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we...Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template.When employed as electrocatalysts,O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_(3RR)compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs).Notably,the NH_(3)production performance was particularly outstanding,with a maximum NH_(3)yield of up to 959.6μmol/(h·cm~2).Furthermore,the Faraday efficiency(FE)was even 88.0%at-0.4 V vs.reversible hydrogen electrode(RHE).This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO_(3)RR.展开更多
Developing a highly active and durable non-noble metal catalyst for aqueous-phase levulinic acid(LA)hydrogenation to g-valerolactone(GVL)is an appealing yet challenging task.Herein,we report well-dispersed Co nanopart...Developing a highly active and durable non-noble metal catalyst for aqueous-phase levulinic acid(LA)hydrogenation to g-valerolactone(GVL)is an appealing yet challenging task.Herein,we report well-dispersed Co nanoparticles(NPs)embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient catalyst for aqueous-phase LA hydrogenation to GVL.The Co zeolitic imidazolate framework(ZIF-67)nanocrystals were anchored on the sodium dodecyl sulfate modified wipe fiber(WF-S),yielding one-dimensional(1-D)structured composite(ZIF-67/WF-S).Subsequently,Co NPs were uniformly embedded in nitrogen-doped mesoporous carbon nanofibers(Co^(R)NC/SMCNF)through a pyrolysis-reduction strategy using ZIF-67/WF-S as the precursor.Benefiting from introducing modified wipe fiber WF-S to enhance the dispersion of Co NPs,and Co^(0) with Co-N_xdual active sites,the resulting Co^(R)NC/SMCNF catalyst shows brilliant catalytic activity(206 h^(-1) turnover frequency).Additionally,the strong metal-support interactions greatly inhibited the Co NPs from aggregation and leaching from the mesoporous carbon nanofibers,and thus increasing the reusability of the Co^(R)NC/SMCNF catalyst(reusable nine times without notable activity loss).展开更多
Potassium-selenium(K-Se)batteries have attracted more and more attention because of their high theoretical specific capacity and natural abundance of K resources.However,dissolution of polyselenides,large volume expan...Potassium-selenium(K-Se)batteries have attracted more and more attention because of their high theoretical specific capacity and natural abundance of K resources.However,dissolution of polyselenides,large volume expansion during cycling and low utilization of Se remain great challenges,leading to poor rate capability and cycle life.Herein,N/O dual-doped carbon nanofibers with interconnected micro/mesopores(MMCFs)are designed as hosts to manipulate Se molecular configuration for advanced flexible K-Se batteries.The micropores play a role in confining small Se molecule(Se_(2–3)),which could inhibit the formation of polyselenides and work as physical barrier to stabilize the cycle performance.While the mesopores can confine long-chain Se(Se_(4–7)),promising sufficient Se loading and contributing to higher discharge voltage of the whole Se@MMCFs composite.The N/O co-doping and the 3D interpenetrating nanostructure improve electrical conductivity and keep the structure integrity after cycling.The obtained Se_(2–3)/Se_(4–7)@MMCFs electrode exhibits an unprecedented cycle life(395 mA h g^(−1) at 1 A g^(−1) after 2000 cycles)and high specific energy density(400 Wh kg^(−1),nearly twice the specific energy density of the Se_(2–3)@MMCFs).This study offers a rational design for the realization of a high energy density and long cycle life chalcogen cathode for energy storage.展开更多
基金National Natural Science Foundation of China(Nos.52225204,52173233 and 52202085)Innovation Program of Shanghai Municipal Education Commission,China(No.2021-01-07-00-03-E00109)+3 种基金Natural Science Foundation of Shanghai,China(No.23ZR1479200)“Shuguang Program”Supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission,China(No.20SG33)Fundamental Research Funds for the Central Universities,China(No.2232024Y-01)DHU Distinguished Young Professor Program,China(Nos.LZA2022001 and LZB2023002)。
文摘Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template.When employed as electrocatalysts,O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_(3RR)compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs).Notably,the NH_(3)production performance was particularly outstanding,with a maximum NH_(3)yield of up to 959.6μmol/(h·cm~2).Furthermore,the Faraday efficiency(FE)was even 88.0%at-0.4 V vs.reversible hydrogen electrode(RHE).This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO_(3)RR.
基金financially supported by the National Key Research and Development Program of China(2018YFB1105100)the National Natural Science Foundation of China(51974339 and 51674270)the funding from Science Foundation of China University of Petroleum,Beijing(24620188JC005)。
文摘Developing a highly active and durable non-noble metal catalyst for aqueous-phase levulinic acid(LA)hydrogenation to g-valerolactone(GVL)is an appealing yet challenging task.Herein,we report well-dispersed Co nanoparticles(NPs)embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient catalyst for aqueous-phase LA hydrogenation to GVL.The Co zeolitic imidazolate framework(ZIF-67)nanocrystals were anchored on the sodium dodecyl sulfate modified wipe fiber(WF-S),yielding one-dimensional(1-D)structured composite(ZIF-67/WF-S).Subsequently,Co NPs were uniformly embedded in nitrogen-doped mesoporous carbon nanofibers(Co^(R)NC/SMCNF)through a pyrolysis-reduction strategy using ZIF-67/WF-S as the precursor.Benefiting from introducing modified wipe fiber WF-S to enhance the dispersion of Co NPs,and Co^(0) with Co-N_xdual active sites,the resulting Co^(R)NC/SMCNF catalyst shows brilliant catalytic activity(206 h^(-1) turnover frequency).Additionally,the strong metal-support interactions greatly inhibited the Co NPs from aggregation and leaching from the mesoporous carbon nanofibers,and thus increasing the reusability of the Co^(R)NC/SMCNF catalyst(reusable nine times without notable activity loss).
基金This work was supported by the National Key R&D Research Program of China(Nos.2018YFA0209600,2017YFA0208300)the National Natural Science Foundation of China(Nos.51925207,U1910210,51872277,52002083,22005292,51802302)+4 种基金the DNL cooperation Fund,CAS(DNL180310)the Fundamental Research Funds for the Central Universities(WK2060140026,WK3430000006,WK2060000009)the National Synchrotron Radiation Laboratoi-y(KY2060000173)the National Postdoctoral Program for Innovative Talents(BX20200318)the China Postdoctoral Science Foundation(Nos.2020M672533,2019TQ0296,2020M682012).
文摘Potassium-selenium(K-Se)batteries have attracted more and more attention because of their high theoretical specific capacity and natural abundance of K resources.However,dissolution of polyselenides,large volume expansion during cycling and low utilization of Se remain great challenges,leading to poor rate capability and cycle life.Herein,N/O dual-doped carbon nanofibers with interconnected micro/mesopores(MMCFs)are designed as hosts to manipulate Se molecular configuration for advanced flexible K-Se batteries.The micropores play a role in confining small Se molecule(Se_(2–3)),which could inhibit the formation of polyselenides and work as physical barrier to stabilize the cycle performance.While the mesopores can confine long-chain Se(Se_(4–7)),promising sufficient Se loading and contributing to higher discharge voltage of the whole Se@MMCFs composite.The N/O co-doping and the 3D interpenetrating nanostructure improve electrical conductivity and keep the structure integrity after cycling.The obtained Se_(2–3)/Se_(4–7)@MMCFs electrode exhibits an unprecedented cycle life(395 mA h g^(−1) at 1 A g^(−1) after 2000 cycles)and high specific energy density(400 Wh kg^(−1),nearly twice the specific energy density of the Se_(2–3)@MMCFs).This study offers a rational design for the realization of a high energy density and long cycle life chalcogen cathode for energy storage.