Silica gel and MCM-41 synthesized mesoporous materials were treated with either oxygen(O_2),hexamethyldisiloxane(HMDSO) and organic vapors like ethanol(Et OH),and acrylonitrile(AN)inductive plasma.The radiofre...Silica gel and MCM-41 synthesized mesoporous materials were treated with either oxygen(O_2),hexamethyldisiloxane(HMDSO) and organic vapors like ethanol(Et OH),and acrylonitrile(AN)inductive plasma.The radiofrequency power for the modification was fixed to 120 W and30 min,assuring a high degree of organic ionization energy in the plasma.The surface properties were studied by infrared spectroscopy(FTIR),scanning electron microscopy,x-ray photoelectron spectroscopy and dynamic light scattering technique was used for characterizing size distributions.When the silica and MCM-41 particles were modified by AN and HMDSO plasma gases,the surface morphology of the particles was changed,presenting another color,size or shape.In contrast,the treatments of oxygen and Et OH did not affect the surface morphology of both particles,but increased the oxygen content at the surface bigger than the AN and HMDSO plasma treatments.In this study,we investigated the influence of different plasma treatments on changes in morphology and the chemical composition of the modified particles which render them a possible new adsorbent for utilization in sorptive extraction techniques for polar compounds.展开更多
The ordered bimodal mesoporous silica MCM-48 spheres were facile synthesized by mild- temperature post-synthesis H2O2 hydrothermal treatment of as-synthesized MCM-48. The results showed that H2O2 is indispensable for ...The ordered bimodal mesoporous silica MCM-48 spheres were facile synthesized by mild- temperature post-synthesis H2O2 hydrothermal treatment of as-synthesized MCM-48. The results showed that H2O2 is indispensable for simultaneously removing organic templates and forming ordered bimodal mesoporous silica MCM-48 spheres. The bimodal mesoporous MCM-48 was characterized by X-ray diffraction, transmission electron micrographs, FT-IR, and N2 adsorption-desorption, and a possible mechanism was proposed for the formation of bimodal mesoporous MCM-48.展开更多
Using cetyl-trimethyl-ammonium bromide (CTMAB) as template and tetraethylortho-silicate (TEOS) as silica source, the MCM-41 mesoporous materials incorporated in framework by Y, Nd and Sm were synthesized by hydrot...Using cetyl-trimethyl-ammonium bromide (CTMAB) as template and tetraethylortho-silicate (TEOS) as silica source, the MCM-41 mesoporous materials incorporated in framework by Y, Nd and Sm were synthesized by hydrothermal synthesis method. The structure, morphology of materials and the state of Y, Nd, Sm in materials were investigated by means of XRD, nitrogen adsorption-desorption, SEM, IR spectrometry, TG-DTA. The XRD results indicate that the samples possess the mesoporous MCM-41 structures with ordered hexagonal arrangements. Y, Nd and Sm ions can get into the framework of mesoporous materials. Nitrogen adsorption desorption isotherms show that the samples have typical mesopores characteristics. SEM micrographs reveal that incorporated sampies show a spherical morphology and the diameters are averagely 0. l0 to 0.15 μm. In IR spectrum of samples, there are the feature adsorption peaks about Si-O-Ln(Ln=Y, Sm, Nd)at 960-985 cm^-1, which affirm that Y, Nd, Sm ions locate in the framework of several mesoporous materials. Results from TG-DTA analysis suggest that two different template sorption sites exist in the framework of YMCM-41, SmMCM-41, NdMCM-41, which powerfully proves that the presence of Y, Nd and Sm in Si framework of the materials.展开更多
From a basic solution containing celyltrimethylammonium cations as the template, thin film of mesoporous MCM-41 has been grown on the surface of a pre-treated indium-tin-oxide conducting glass substrate. The channel a...From a basic solution containing celyltrimethylammonium cations as the template, thin film of mesoporous MCM-41 has been grown on the surface of a pre-treated indium-tin-oxide conducting glass substrate. The channel axis of the film is oriented parallel with the surface plane of the substrate, and the film is stable after careful removal of template in vacuum.展开更多
Mesoporous silicon oxynitrides MCM-41 were synthesized successfully. The resulting materials not only have high nitrogen contents and good structural characteristics of MCM-41 (high surface area, narrow pore size dist...Mesoporous silicon oxynitrides MCM-41 were synthesized successfully. The resulting materials not only have high nitrogen contents and good structural characteristics of MCM-41 (high surface area, narrow pore size distribution and good order), but also are amorphous. The composition and structure of the materials were investigated by CNH element analysis, XPS, Si MAS NMR, XRD, HRTEM and N-2 sorption, respectively. Mesoporous silicon oxynitrides MCM-41 with a high nitrogen content are still non-crystal (amorphous).展开更多
Fluoride above 1.5 mg<span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span></span>L...Fluoride above 1.5 mg<span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span></span>L<sup><span style="color:#4f4f4f;">-</span></sup><sup>1</sup> is injurious to health. Removal of fluoride from water using mesoporous MCM-41 as a strong adsorbent material has been attempted. Characterization using transmission electron microscopic study of calcined MCM-41 showed the regular hexagonal array of mesoporous channels with <span style="font-family:;" "="">an </span><span style="font-family:;" "="">average size of 20 nm and the surface area (BET study) of 1306.96 m<sup>2</sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>g<sup><span style="color:#4f4f4f;">-</span></sup></span><sup>1</sup>. The average pore size of the particles was found to be 14.21 nm. <span style="font-family:;" "="">A </span><span style="font-family:;" "="">study on the effect of contact time on the removal of fluoride revealed that more than 85% uptake of fluoride onto MCM-41 was achieved at a contact time of 120 min. From </span><span style="font-family:;" "="">the </span><span style="font-family:;" "="">Langmuir adsorption study, the maximum sorption capacity of fluoride was found to be 63.05 mg/g at 301 K. From </span><span style="font-family:;" "="">the </span><span style="font-family:;" "="">thermodynamic study, the +ΔH<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">o</span> value of 2.29 kJ<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>mol<sup><span style="white-space:normal;"><sup></sup></span><span style="white-space:normal;color:#4f4f4f;">-</span></sup></span><sup>1</sup> indicated the endothermic nature of the removal process. Application of Response Surface Model suggested that 77.88% of fluoride removal can be achieved at fluoride concentration of 10 mg<span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span></span>L<sup>-</sup><sup>1</sup>, pH (6.3)<span style="font-family:;" "="">,</span><span style="font-family:;" "=""> and contact time of 120 min.</span>展开更多
Using cetyl-trimethyl-ammonium bromide (CTMAB) as template agent and tetraethylorthosilicate (TEOS) as silica Source, the MCM-41 mesoporous materials were synthesized with Y, Nd and Sm incorporated in the framewor...Using cetyl-trimethyl-ammonium bromide (CTMAB) as template agent and tetraethylorthosilicate (TEOS) as silica Source, the MCM-41 mesoporous materials were synthesized with Y, Nd and Sm incorporated in the framework under hydrothermal conditions. The structure and the micro-morphology of the materials and the state of Y, Nd and Sm were investigated through the analyses of XRD, nitrogen adsorption-desorption isotherm, SEM, IR and TG-DTA. The XRD resuits indicate that the synthetic samples are of typical structure of mesoporous MCM-41 with ordered hexagonal arrangements, and Y, Nd and Sm can be incorporated into the framework of these mesoporous materials. Nitrogen adsorption-desorption isotherms show that the samples possess the typical mesopores character. SEM micrographs reveal that the incorporated samples show a well-defined spherical morphology with the diameter ranging 0.10 - 0.15μm. The occurrence of two different template sorption sites in the framework as revealed by TG-DTA analysis further suggests the presence of Y, Nd and Sm in siliceous framework.展开更多
Following hydrothermal synthesis process, MCM-41 was synthesized by using cetyltriethylammonium bromide as templating agent. The experimental results showed that MCM-41 with pore diameter in the range of 4-7 nm can be...Following hydrothermal synthesis process, MCM-41 was synthesized by using cetyltriethylammonium bromide as templating agent. The experimental results showed that MCM-41 with pore diameter in the range of 4-7 nm can be obtained by adjusting nsurf/nsi. It was proved that cetyltriethylammonium bromide is an effective templating agent for increasing pore diameter of molecular sieve MCM-41.展开更多
Mesoporous molecular sieve MCM-41 has been synthesized in the extremely dense system (with H2O/Si<10) and characterized by XRD, N-2 adsorption isotherm as well as probe reactions of cracking of cumene and isomeriza...Mesoporous molecular sieve MCM-41 has been synthesized in the extremely dense system (with H2O/Si<10) and characterized by XRD, N-2 adsorption isotherm as well as probe reactions of cracking of cumene and isomerization of o-xylene.展开更多
The simultaneous removal of up to 92% of the surfactant template and chemical implantation of transition metal complexes into mesopores has been successfully achieved by treating as-synthesized pure siliceous MCM-41 w...The simultaneous removal of up to 92% of the surfactant template and chemical implantation of transition metal complexes into mesopores has been successfully achieved by treating as-synthesized pure siliceous MCM-41 with supercritical CO2 modified with CH2Cl2/MeOH mixture, resulting in the formation of functionalized material with uniform pore structure.展开更多
TiO2 grafted silica MCM-41 catalyst with and without sulfate treatment were prepared. The structural and acid properties of these materials were investigated by XRD, N2 adsorption-desorption, element analysis, thermal...TiO2 grafted silica MCM-41 catalyst with and without sulfate treatment were prepared. The structural and acid properties of these materials were investigated by XRD, N2 adsorption-desorption, element analysis, thermal analysis, Raman and FTIR measurements. Their acid-catalytic activities were evaluated using the cyclization reaction of pseudoionone. It was found that the obtained materials possess well-ordered mesostructure, and the grafted TiO2 components were in highly dispersed amorphous form. T/MCM41 without sulfation contained only Lewis acid sites, while Brφnsted and Lewis acidities were remarkably improved for the sulfated materials ST/MCM41 and d-ST/MCM41. T/MCM-41 was not active for the cyclization reaction of pseudoionone, but ST/MCM-41 and d-ST/MCM-41 possessed favorable catalytic activities. The catalytic performance of ST/MCM-41 was comparable with that of the commercial solid acid catalyst of Amberlyst-15, and better than that of d-ST/MCM-41, although the latter underwent a second TiO2 grafting process and accordingly had higher Ti and S content. The specific surface structure of Si-O-Ti-O-S=O in ST/MCM-41 and the bilateral induction effect of Si and S=O on Si-O-Ti bonds were speculated to account for its higher acid catalytic activity.展开更多
Novel in-situ reduction approach was applied for the synthesis of palladium nanoparticles in the pores of mesoporous silica materials with grafted siliconhydride groups. Matrices possessing different structural proper...Novel in-situ reduction approach was applied for the synthesis of palladium nanoparticles in the pores of mesoporous silica materials with grafted siliconhydride groups. Matrices possessing different structural properties (MCM-41, SBA-15 and Silochrom) were used. Samples were studied by nitrogen adsorption-desorption method, low-angle X-ray diffraction, transmission electron microscopy (TEM) and FT-IR/PAS spectroscopy. The temperature-programmed oxidation (TPO) and reduction (TPR) methods were applied to examine reducibility of palladium species. Palladium containing catalysts were tested in methane oxidation reaction. It was demonstrated that relatively large pores in SBA-15 type silica facilitated formation of well-dispersed palladium nanoparticles confined in the pores channels. In the case of MCM-41 support, metallic palladium nanoparticles were formed on the external surface. The obtained materials showed high catalytic activity. Lower activity of the samples containing small crystallites located in the pore volume at high temperatures was related to worse accessibility of active sites to the reation mixture.展开更多
Mesoporous MCM-41-type molecular sieves were synthesized using calcined and leached chrysotile and cetyltrimethylammonium bromide as the silica source and structure directing agent, respectively. Powder X-ray diffract...Mesoporous MCM-41-type molecular sieves were synthesized using calcined and leached chrysotile and cetyltrimethylammonium bromide as the silica source and structure directing agent, respectively. Powder X-ray diffraction (XRD), N2 isothermal adsorption-desorption, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were used to characterize the samples. The calcined and leached chrysotile can be employed as an inexpensive silica source for the formation of low-order MCM-41 mesoporous materials.展开更多
A convenient and economic method for preparing highly ordered MCM 41 was studied in an open vessel by using waterglass as the silicon source. XRD, nitrogen adsorption and TEM show that the product has a highly ordered...A convenient and economic method for preparing highly ordered MCM 41 was studied in an open vessel by using waterglass as the silicon source. XRD, nitrogen adsorption and TEM show that the product has a highly ordered structure and the hexagonal arrangements of uniformly size pores distribution.展开更多
It was proved by ICP, fluorescence spectra and N 2 adsorption that the rare earth complex [C 5H 5NC 16H 33] [Eu(TTA) 4] is in the channel of Si-MCM-41 in the course of assembly. The rare earth complex of 67.9% is in t...It was proved by ICP, fluorescence spectra and N 2 adsorption that the rare earth complex [C 5H 5NC 16H 33] [Eu(TTA) 4] is in the channel of Si-MCM-41 in the course of assembly. The rare earth complex of 67.9% is in the channel, suggesting that the assembly of the complex molecular on the mesoporous MCM-41 was carried out mainly in the channel.展开更多
基金supported by CONACYT Ciencia Básica project 176544SEM and XPS measurements were performed at LANNBIO Cinvestav Mérida,under support from projects FOMIX-Yucatán 2008-108160,CONACYT LAB2009-01 No.123913
文摘Silica gel and MCM-41 synthesized mesoporous materials were treated with either oxygen(O_2),hexamethyldisiloxane(HMDSO) and organic vapors like ethanol(Et OH),and acrylonitrile(AN)inductive plasma.The radiofrequency power for the modification was fixed to 120 W and30 min,assuring a high degree of organic ionization energy in the plasma.The surface properties were studied by infrared spectroscopy(FTIR),scanning electron microscopy,x-ray photoelectron spectroscopy and dynamic light scattering technique was used for characterizing size distributions.When the silica and MCM-41 particles were modified by AN and HMDSO plasma gases,the surface morphology of the particles was changed,presenting another color,size or shape.In contrast,the treatments of oxygen and Et OH did not affect the surface morphology of both particles,but increased the oxygen content at the surface bigger than the AN and HMDSO plasma treatments.In this study,we investigated the influence of different plasma treatments on changes in morphology and the chemical composition of the modified particles which render them a possible new adsorbent for utilization in sorptive extraction techniques for polar compounds.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20872135) and the China National Tobacco Corporation (No.110200701007).
文摘The ordered bimodal mesoporous silica MCM-48 spheres were facile synthesized by mild- temperature post-synthesis H2O2 hydrothermal treatment of as-synthesized MCM-48. The results showed that H2O2 is indispensable for simultaneously removing organic templates and forming ordered bimodal mesoporous silica MCM-48 spheres. The bimodal mesoporous MCM-48 was characterized by X-ray diffraction, transmission electron micrographs, FT-IR, and N2 adsorption-desorption, and a possible mechanism was proposed for the formation of bimodal mesoporous MCM-48.
文摘Using cetyl-trimethyl-ammonium bromide (CTMAB) as template and tetraethylortho-silicate (TEOS) as silica source, the MCM-41 mesoporous materials incorporated in framework by Y, Nd and Sm were synthesized by hydrothermal synthesis method. The structure, morphology of materials and the state of Y, Nd, Sm in materials were investigated by means of XRD, nitrogen adsorption-desorption, SEM, IR spectrometry, TG-DTA. The XRD results indicate that the samples possess the mesoporous MCM-41 structures with ordered hexagonal arrangements. Y, Nd and Sm ions can get into the framework of mesoporous materials. Nitrogen adsorption desorption isotherms show that the samples have typical mesopores characteristics. SEM micrographs reveal that incorporated sampies show a spherical morphology and the diameters are averagely 0. l0 to 0.15 μm. In IR spectrum of samples, there are the feature adsorption peaks about Si-O-Ln(Ln=Y, Sm, Nd)at 960-985 cm^-1, which affirm that Y, Nd, Sm ions locate in the framework of several mesoporous materials. Results from TG-DTA analysis suggest that two different template sorption sites exist in the framework of YMCM-41, SmMCM-41, NdMCM-41, which powerfully proves that the presence of Y, Nd and Sm in Si framework of the materials.
文摘From a basic solution containing celyltrimethylammonium cations as the template, thin film of mesoporous MCM-41 has been grown on the surface of a pre-treated indium-tin-oxide conducting glass substrate. The channel axis of the film is oriented parallel with the surface plane of the substrate, and the film is stable after careful removal of template in vacuum.
文摘Mesoporous silicon oxynitrides MCM-41 were synthesized successfully. The resulting materials not only have high nitrogen contents and good structural characteristics of MCM-41 (high surface area, narrow pore size distribution and good order), but also are amorphous. The composition and structure of the materials were investigated by CNH element analysis, XPS, Si MAS NMR, XRD, HRTEM and N-2 sorption, respectively. Mesoporous silicon oxynitrides MCM-41 with a high nitrogen content are still non-crystal (amorphous).
文摘Fluoride above 1.5 mg<span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span></span>L<sup><span style="color:#4f4f4f;">-</span></sup><sup>1</sup> is injurious to health. Removal of fluoride from water using mesoporous MCM-41 as a strong adsorbent material has been attempted. Characterization using transmission electron microscopic study of calcined MCM-41 showed the regular hexagonal array of mesoporous channels with <span style="font-family:;" "="">an </span><span style="font-family:;" "="">average size of 20 nm and the surface area (BET study) of 1306.96 m<sup>2</sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>g<sup><span style="color:#4f4f4f;">-</span></sup></span><sup>1</sup>. The average pore size of the particles was found to be 14.21 nm. <span style="font-family:;" "="">A </span><span style="font-family:;" "="">study on the effect of contact time on the removal of fluoride revealed that more than 85% uptake of fluoride onto MCM-41 was achieved at a contact time of 120 min. From </span><span style="font-family:;" "="">the </span><span style="font-family:;" "="">Langmuir adsorption study, the maximum sorption capacity of fluoride was found to be 63.05 mg/g at 301 K. From </span><span style="font-family:;" "="">the </span><span style="font-family:;" "="">thermodynamic study, the +ΔH<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">o</span> value of 2.29 kJ<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>mol<sup><span style="white-space:normal;"><sup></sup></span><span style="white-space:normal;color:#4f4f4f;">-</span></sup></span><sup>1</sup> indicated the endothermic nature of the removal process. Application of Response Surface Model suggested that 77.88% of fluoride removal can be achieved at fluoride concentration of 10 mg<span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span></span>L<sup>-</sup><sup>1</sup>, pH (6.3)<span style="font-family:;" "="">,</span><span style="font-family:;" "=""> and contact time of 120 min.</span>
文摘Using cetyl-trimethyl-ammonium bromide (CTMAB) as template agent and tetraethylorthosilicate (TEOS) as silica Source, the MCM-41 mesoporous materials were synthesized with Y, Nd and Sm incorporated in the framework under hydrothermal conditions. The structure and the micro-morphology of the materials and the state of Y, Nd and Sm were investigated through the analyses of XRD, nitrogen adsorption-desorption isotherm, SEM, IR and TG-DTA. The XRD resuits indicate that the synthetic samples are of typical structure of mesoporous MCM-41 with ordered hexagonal arrangements, and Y, Nd and Sm can be incorporated into the framework of these mesoporous materials. Nitrogen adsorption-desorption isotherms show that the samples possess the typical mesopores character. SEM micrographs reveal that the incorporated samples show a well-defined spherical morphology with the diameter ranging 0.10 - 0.15μm. The occurrence of two different template sorption sites in the framework as revealed by TG-DTA analysis further suggests the presence of Y, Nd and Sm in siliceous framework.
文摘Following hydrothermal synthesis process, MCM-41 was synthesized by using cetyltriethylammonium bromide as templating agent. The experimental results showed that MCM-41 with pore diameter in the range of 4-7 nm can be obtained by adjusting nsurf/nsi. It was proved that cetyltriethylammonium bromide is an effective templating agent for increasing pore diameter of molecular sieve MCM-41.
文摘Mesoporous molecular sieve MCM-41 has been synthesized in the extremely dense system (with H2O/Si<10) and characterized by XRD, N-2 adsorption isotherm as well as probe reactions of cracking of cumene and isomerization of o-xylene.
文摘The simultaneous removal of up to 92% of the surfactant template and chemical implantation of transition metal complexes into mesopores has been successfully achieved by treating as-synthesized pure siliceous MCM-41 with supercritical CO2 modified with CH2Cl2/MeOH mixture, resulting in the formation of functionalized material with uniform pore structure.
文摘TiO2 grafted silica MCM-41 catalyst with and without sulfate treatment were prepared. The structural and acid properties of these materials were investigated by XRD, N2 adsorption-desorption, element analysis, thermal analysis, Raman and FTIR measurements. Their acid-catalytic activities were evaluated using the cyclization reaction of pseudoionone. It was found that the obtained materials possess well-ordered mesostructure, and the grafted TiO2 components were in highly dispersed amorphous form. T/MCM41 without sulfation contained only Lewis acid sites, while Brφnsted and Lewis acidities were remarkably improved for the sulfated materials ST/MCM41 and d-ST/MCM41. T/MCM-41 was not active for the cyclization reaction of pseudoionone, but ST/MCM-41 and d-ST/MCM-41 possessed favorable catalytic activities. The catalytic performance of ST/MCM-41 was comparable with that of the commercial solid acid catalyst of Amberlyst-15, and better than that of d-ST/MCM-41, although the latter underwent a second TiO2 grafting process and accordingly had higher Ti and S content. The specific surface structure of Si-O-Ti-O-S=O in ST/MCM-41 and the bilateral induction effect of Si and S=O on Si-O-Ti bonds were speculated to account for its higher acid catalytic activity.
基金This work was supported by European Community,seventh Framework Programm(FP/2007-2013)Marie Curie International Research Staff Exchange Scheme(grant no.230790)project MEC 06 MAT2006 01997.
文摘Novel in-situ reduction approach was applied for the synthesis of palladium nanoparticles in the pores of mesoporous silica materials with grafted siliconhydride groups. Matrices possessing different structural properties (MCM-41, SBA-15 and Silochrom) were used. Samples were studied by nitrogen adsorption-desorption method, low-angle X-ray diffraction, transmission electron microscopy (TEM) and FT-IR/PAS spectroscopy. The temperature-programmed oxidation (TPO) and reduction (TPR) methods were applied to examine reducibility of palladium species. Palladium containing catalysts were tested in methane oxidation reaction. It was demonstrated that relatively large pores in SBA-15 type silica facilitated formation of well-dispersed palladium nanoparticles confined in the pores channels. In the case of MCM-41 support, metallic palladium nanoparticles were formed on the external surface. The obtained materials showed high catalytic activity. Lower activity of the samples containing small crystallites located in the pore volume at high temperatures was related to worse accessibility of active sites to the reation mixture.
基金The authors gratefully acknowledge financial support from CAPES organizationas well as the NEPGN-UFRN organization for use of their Scanning Electron Micros-copy
文摘Mesoporous MCM-41-type molecular sieves were synthesized using calcined and leached chrysotile and cetyltrimethylammonium bromide as the silica source and structure directing agent, respectively. Powder X-ray diffraction (XRD), N2 isothermal adsorption-desorption, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were used to characterize the samples. The calcined and leached chrysotile can be employed as an inexpensive silica source for the formation of low-order MCM-41 mesoporous materials.
文摘A convenient and economic method for preparing highly ordered MCM 41 was studied in an open vessel by using waterglass as the silicon source. XRD, nitrogen adsorption and TEM show that the product has a highly ordered structure and the hexagonal arrangements of uniformly size pores distribution.
文摘It was proved by ICP, fluorescence spectra and N 2 adsorption that the rare earth complex [C 5H 5NC 16H 33] [Eu(TTA) 4] is in the channel of Si-MCM-41 in the course of assembly. The rare earth complex of 67.9% is in the channel, suggesting that the assembly of the complex molecular on the mesoporous MCM-41 was carried out mainly in the channel.