Microporous titanium dioxide films were prepared by the sol-gel methods on glass substrates, using tetrabutyl titanate as source material. In order to absorb the visible light and increase the photocatalytic activitie...Microporous titanium dioxide films were prepared by the sol-gel methods on glass substrates, using tetrabutyl titanate as source material. In order to absorb the visible light and increase the photocatalytic activities, different concentrations of neodymium ions (Nd/Ti molar ratio was 0.5%, 0.7%, 0.9%, and 1.1% respectively) were added into the sol. X-ray diffraction (XRD), X-ray photoelectron spectros-copy (XPS), and atom force microscopy (AFM) were applied to characterize the modified films. A kind of typical textile industry pollutant (Rhodamine B) was used to evaluate the photocatalytic activities of the films under visible light. The results showed that the activities of the films were improved by doping Nd ions into the sol.展开更多
We report a new and simple preparation method of the visible light responsive Titanium dioxide (TiO2) photocatalytic films using sol-gel method and ultraviolet light (UV) irradiation. Proposed films were prepared on f...We report a new and simple preparation method of the visible light responsive Titanium dioxide (TiO2) photocatalytic films using sol-gel method and ultraviolet light (UV) irradiation. Proposed films were prepared on fused silica plates using titanium tetra-isopropoxide, urea, 2-methoxyethanol, water and UV irradiation. The 650°C-annealed films were carbon-containing anatase type TiO2, not carbon-doped ones. The prepared films absorbed visible light with wavelengths longer than 400 nm. Also, organic dyes were effectively photodegradated by visible light irradiation in the presence of these films.展开更多
A commercially pure titanium sheet with titanium carbide (TiC) precipitated in its surface layer was anodized in NH4NO3 aqueous solution and heat treated in air. The photocatalytic activity of titanium dioxide powder ...A commercially pure titanium sheet with titanium carbide (TiC) precipitated in its surface layer was anodized in NH4NO3 aqueous solution and heat treated in air. The photocatalytic activity of titanium dioxide powder collected from the surface of the anodized titanium sheet was evaluated under ultra-violet and visible light irradiation. It showed relatively high photocatalytic activity in 0.1 mol/l potassium iodide solution, which was almost equal to the activity level of TiO2 powder (P-25) manufactured by Degussa Corporation. The better photocatalytic activity under ultra-violet irradiation is considered to be related to the formation of anatase type titanium dioxide. Photocatalytic activity under visible light irradiation was also observed, which was considered to be attributable to impurity doping, (carbon), in the titanium dioxide powder.展开更多
A commercially pure titanium sheet precipitated TiC in the surface layer was fabricated by anodic oxidation in NH4NO3 solution and heat treatment in air. The fabricated sheet showed relatively high photocatalytic acti...A commercially pure titanium sheet precipitated TiC in the surface layer was fabricated by anodic oxidation in NH4NO3 solution and heat treatment in air. The fabricated sheet showed relatively high photocatalytic activity in 0.1 M KI solution, which was close to the activity level of the P-25 particle made by Degussa Corporation. It exhibited photocatalytic activity in antifungal and antivirus tests under black light irradiation. The better photocatalytic activity under black light irradiation is considered to be related to the formation of anatase and rutile type titanium dioxides and rough surface. It also showed photocatalytic activity under visible light irradiation, which is considered to be attributable to carbon and nitrogen doping in titanium dioxide.展开更多
A novel visible light active photo-catalyst named CHC/C-PVA/TiO2, the composite of titanium dioxide(TiO2)with conjugated derivative of polyvinyl alcohol(C-PVA) loaded on a cordierite honeycomb ceramic(CHC)substr...A novel visible light active photo-catalyst named CHC/C-PVA/TiO2, the composite of titanium dioxide(TiO2)with conjugated derivative of polyvinyl alcohol(C-PVA) loaded on a cordierite honeycomb ceramic(CHC)substrate, was fabricated by combining the synthesis of TiO2 sol, preparation of C-PVA via thermally treating polyvinyl alcohol, and immobilization of TiO2 sol and C-PVA on CHC. By detecting the change of UV–vis absorption spectra of the model organic pollutant(methyl orange(MO)) in the presence of the composite under visible light irradiation, the photo-catalytic activity was evaluated and the results show that the CHC/C-PVA/TiO2 composite has an enhanced photo-catalytic activity when compared to the CHC/TiO2 composite. Besides, the CHC/C-PVA/TiO2 shows a good photo-catalytic stability after the fourth cycles. The structure analyses by scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy(EDS) show the coexistence of C-PVA and TiO2 on the CHC and the cracks on the surface of CHC/C-PVA/TiO2. Result of ultraviolet-visible diffuse reflection spectroscopy(UV–vis DRS) reveals that the CHC/C-PVA/TiO2 can absorb both ultraviolet and visible light while result of X-ray photoelectron spectroscopy(XPS) indicates the existence of C, O and Ti elements in the CHC/C-PVA/TiO2. The typical structures as well as the optical characteristics of the CHC/C-PVA/TiO2 are responsible for the enhancement in the photo-catalytic activity.展开更多
I-doped titanium dioxide nanospheres (I-TNSs) were synthesized via a two-step hydrothermal synthesis route, their potential for the efficient utilization of visible light was evaluated. The prepared anatase-phase I-...I-doped titanium dioxide nanospheres (I-TNSs) were synthesized via a two-step hydrothermal synthesis route, their potential for the efficient utilization of visible light was evaluated. The prepared anatase-phase I-TNSs had a bimodal porous size distribution with a Brunauer-Emmett-Teller surface area of 76 m2/g, a crystallite size of approximately 14 nm calculated from X-ray diffraction data, and a remarkable absorption in the visible light region at wavelengths 〉 400 nm. The photocatalytic activity of the samples was evaluated by decoloration of Methyl Orange in aqueous solution under visible light irradiation in comparison to the iodine-doped TiO2 (I-TiO2). The I-TNSs showed higher photocatalytic efficiency compared with I-TiO2 after irradiation for 180 rain even though the latter had a much greater surface area (115 m2/g). It was concluded that the surface area was not the predominant factor determining photocatalytic activity, and that the good crystallization and bimodal porous nanosphere structure were favourable for photocatalysis.展开更多
Visible light-induced two-step overall water-splitting was achieved by combining two types of photocatalysts, which were prepared by introducing foreign elements into rutile titanium dioxide (TiO2) and strontium titan...Visible light-induced two-step overall water-splitting was achieved by combining two types of photocatalysts, which were prepared by introducing foreign elements into rutile titanium dioxide (TiO2) and strontium titanate (SrTiO3) with a controlled electronic band structure. Rutile TiO2 and SrTiO3 were doped with chromium and tantalum (Cr,Ta-TiO2) and with rhodium (Rh-SrTiO3), respectively, to introduce visible-light sensitivity. Under irradiation with only visible light from a 420-nm LED lamp, the simultaneous liberation of hydrogen and oxygen with a molar ratio of ~2:1 was achieved with these two types of photocatalysts in the presence of iodate ion/iodide ion as a redox mediator.展开更多
A novel kind of magnetically separable photocatalyst of cerrium-doped mesoporous titanium dioxide coated magnetite (Ce/MTiO2/ Fe3O4) was prepared and its activities under UV and visible light were reported. The cata...A novel kind of magnetically separable photocatalyst of cerrium-doped mesoporous titanium dioxide coated magnetite (Ce/MTiO2/ Fe3O4) was prepared and its activities under UV and visible light were reported. The catalysts with Ce/MTiO2 shell and Fe3O4 core were prepared by coating photoactive Ce/MTiO2 onto a magnetic Fe3O4 core through the hydrolysis of tetrabutyltitanate (Ti(OBu)4, TBT) with precursors of ammonium ceric nitrate and TBT in the presence of Fe3O4 particles. The MTiO2 shell was for photocatalysis, the Fe3O4 core was for separation by the magnetic field and the doped Ce was used to enhance the photocatalytic activity of MTiO2. The morphological, structural and optical properties of the prepared samples were characterized by Bnmauer-Emmett-Teller (BET) surface area, transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis absorption spectroscopy. The effect of cerrium-doped content on the photocatalytic activity was studied and the result revealed that 0.5 mol.% Ce/MTiO2/Fe3O4 exhibited highest photoactivity. The photocatalytic activities of obtained photocatalysts under UV and visible light were estimated by measuring the degradation rate of methylene blue (MB, 50 mg/L) in an aqueous solution. The results showed that the prepared photocatalyst was activated by visible light and used as effective catalyst in photooxi- dation reactions. In addition, the possibility of cyclic usage of the prepared photocatalyst was also confirmed. Moreover, Ce/MTiO2 was tightly bound to Fe3O4 and could be easily recovered from the medium by an external magnetic filed. So, the photocatalyst can be reused without any mass loss. It can therefore be potentially applied for the treatment of water contaminated by organic pollutants.展开更多
CdS/m-TiO2 heteroarchitecture with CdS nanocrystals loaded on mesoporous TiO2(m-TiO2) spheres was successfully synthesized via sol-gel method followed by solvothermal treatment. The material with uniform diameter of...CdS/m-TiO2 heteroarchitecture with CdS nanocrystals loaded on mesoporous TiO2(m-TiO2) spheres was successfully synthesized via sol-gel method followed by solvothermal treatment. The material with uniform diameter of ca. 750 nm possesses regular mesoporous structure and large specific surface area of 100.5 m2/g. When used to photodegradate Rhodamine B(RB) under visible light, the CdS/m-TiO2 heteroarchitecture exhibits improved photo-catalytic performance in comparison with pure m-TiO2 or CdS. The excellent photocatalytic activity is closely related to the facilitated separation of electron-hole pairs derived from the CdS/m-TiO2 heterojunction and mesoporous structure with high specific surface area and adequately exposed active sites.展开更多
A novel visible-light-responding InVO4-Cu2O-TiO2 ternary nanoheterostructure was designed on the basis of the strategy of energy gap engineering and prepared through ordinary wet chemistry methods. The as-prepared nan...A novel visible-light-responding InVO4-Cu2O-TiO2 ternary nanoheterostructure was designed on the basis of the strategy of energy gap engineering and prepared through ordinary wet chemistry methods. The as-prepared nanoheterostructure was characterized by X-ray powder diffraction(XRD), transmission electron microscopy(TEM), high-resolution transmission electron microscopy(HRTEM) and diffuse reflectance ultraviolet-visible spectroscopy(UV-vis/DRS). The TEM and HRTEM images of 10%InVO4-40%Cu2O-50%TiO2 confirm the formation of nanoheterostructures resulting from contact of the nanosized TiO2, Cu2O and InVO4 in the size of 5–20 nm in diameter. The InVO4-Cu2O-TiO2 nanoheterostructure, when compared with TiO2, Cu2O, InVO4, InVO4-TiO2 and Cu2O-TiO2, shows significant enhancement in the photocatalytic performance for the degradation of methyl orange(MO) under visible-light irradiation. With a 9 W energy-saving fluorescent lamp as the visible-light source, the MO degradation rate of 10%InVO4-40%Cu2O-50%TiO2 reaches close to 90% during 5 h, and the photocatalytic efficiency is maintained at over 90% after six cycles. This may be mainly ascribed to the matched bandgap configurations of TiO2, Cu2O and InVO4, and the formations of two p-n junctions by the p-type semiconductor Cu2O with the n-type semiconductors TiO2 and InVO4, all of which favor spatial photogenerated charge carrier separation. The X-ray photoelectron spectroscopy(XPS) characterization for the used 10%InVO4-40%Cu2O-50%TiO2 reveals that only a small shakeup satellite peak appears for Cu(II) species, implying bearable photocorrosion of Cu2O. This work could provide new insight into the design and preparation of novel visible-light-responding semiconductor composites.展开更多
Titanium dioxide nanoparticles modified with neodymium in the range of 1 mol% to 5 mol% were prepared with template-free sol-gel method.The structures of obtained samples were characterized by X-ray powder diffraction...Titanium dioxide nanoparticles modified with neodymium in the range of 1 mol% to 5 mol% were prepared with template-free sol-gel method.The structures of obtained samples were characterized by X-ray powder diffraction analysis.X-ray photoelectron spectroscopy,scanning electron microscopy,transmission electron microscopy and diffuse reflectance spectroscopy.The photocatalytic activity of the obtained samples was evaluated by photodegradation of methyl orange in aqueous solution under ultraviolet-visible(λ> 350 nm) and visible(λ> 420 nm) irradiation.The experimental results show that the 1 mol% Nd-doped TiO2 exhibits the highest photocatalytic activity,of which the degradation can reach to 96.5% under visible irradiation.According to the XRD results,the pristine samples are combined with anatase TiO2 and rutile TiO2.while the Nd-doped TiO2 samples are anatase TiO2 only.This transformation has made an obvious promotion of photocatalyst activity after modification.展开更多
Magnetically separable bismuth ferrite(BiFeO3)nanoparticles were fabricated by a citrate self‐combustion method and coated with titanium dioxide(TiO2)by hydrolysis of titanium butoxide(Ti(OBu)4)to form BiFeO3@TiO2cor...Magnetically separable bismuth ferrite(BiFeO3)nanoparticles were fabricated by a citrate self‐combustion method and coated with titanium dioxide(TiO2)by hydrolysis of titanium butoxide(Ti(OBu)4)to form BiFeO3@TiO2core-shell nanocomposites with different mass ratios of TiO2to BiFeO3.The photocatalytic performance of the catalysts was comprehensively investigated via photocatalytic oxidation of methyl violet(MV)under both ultraviolet and visible‐light irradiation.The BiFeO3@TiO2samples exhibited better photocatalytic performance than either BiFeO3or TiO2alone,and a BiFeO3@TiO2sample with a mass ratio of1:1and TiO2shell thickness of50-100nm showed the highest photo‐oxidation activity of the catalysts.The enhanced photocatalytic activity was ascribed to the formation of a p‐n junction of BiFeO3and TiO2with high charge separation efficiency as well as strong light absorption ability.Photoelectrochemical Mott-Schottky(MS)measurements revealed that both the charge carrier transportation and donor density of BiFeO3were markedly enhanced after introduction of TiO2.The mechanism of MV degradation is mainly attributed to hydroxyl radicals and photogenerated electrons based on energy band theory and the formation of an internal electrostatic field.In addition,the unique core-shell structure of BiFeO3@TiO2also promotes charge transfer at the BiFeO3/TiO2interface by increasing the contact area between BiFeO3and TiO2.Finally,the photocatalytic activity of BiFeO3@TiO2was further confirmed by degradation of other industrial dyes under visible‐light irradiation.展开更多
This work presents the visible-light photocatalytic selective oxidation of thiols to disulfides with molecular oxygen(O2) on anatase TiO2. The high specific surface area of anatase TiO2 proved to be especially critica...This work presents the visible-light photocatalytic selective oxidation of thiols to disulfides with molecular oxygen(O2) on anatase TiO2. The high specific surface area of anatase TiO2 proved to be especially critical in conferring high photocatalytic activity. Herein, surface complexation between thiol and TiO2 gives rise to photocatalytic activity under irradiation with 520 nm green light-emitting diodes(LEDs), resulting in excellent reaction activity, substrate scope, and functional group tolerance. The transformation was extremely efficient for the selective oxidation of various thiols, particularly with substrates bearing electron-withdrawing groups(reaction times of less than 10 min). To date, the longest wavelength of visible light that this system can utilize is 520 nm by the surface complex of substrate-TiO2. Importantly, O2 was found to act as the electron and proton acceptor, rather than to incorporate into the substrates. Our findings regarding this surface complex-based photocatalytic system can allow one to understand the interaction between the conduction band electrons and O2.展开更多
A different approach to synthesize visible‐light‐active sulfur(S)‐doped reduced titania(S‐TiO2‐x)using thiourea dioxide as both the S source and reductant was developed.The structure,morphology,and optical and el...A different approach to synthesize visible‐light‐active sulfur(S)‐doped reduced titania(S‐TiO2‐x)using thiourea dioxide as both the S source and reductant was developed.The structure,morphology,and optical and electronic properties of the as‐prepared S‐TiO2‐x samples were examined by multiple techniques,such as X‐ray diffraction,transmission electron microscopy,X‐ray photoelectron spectroscopy,ultraviolet‐visible diffuse reflectance spectroscopy,Brunauer‐Emmett‐Teller and photocurrent measurements,and electrochemical impedance spectroscopy.The photocatalytic activity of S‐TiO2‐x was evaluated by photodegradation of organic Rhodamine B under visible‐light irradiation.The degradation rate of Rhodamine B by S‐TiO2‐x obtained by calcination was about31,2.5,and3.6times higher than those of pure TiO2,pristine TiO2‐x,and S‐doped TiO2,respectively.In addition,the as‐prepared S‐TiO2‐x exhibited long‐term stable photocatalytic performance in the degradation of Rhodamine B under visible‐light illumination.This report reveals a new approach to prepare stable and highly efficient solar light‐driven photocatalysts for water purification.展开更多
particle size (5.0 nm), large specific surface area (213.45 m1 2/g), and efficient response to broadband light over the entire ultraviolet-visible spectrum with a narrow band gap of 1.84 eV. In addition, TiO2 -18...particle size (5.0 nm), large specific surface area (213.45 m1 2/g), and efficient response to broadband light over the entire ultraviolet-visible spectrum with a narrow band gap of 1.84 eV. In addition, TiO2 -180℃ exhibited the optimal reaction rate constant for the degradation of methylene blue (0.08287 mg/(Lmin)), which is six times higher than that of the mixed rutile/anatase phase TiO2 photocatalytic standard P25 (0.01342 mg/(L min)). Furthermore, cycling photodegradation ex-periments confirmed the stability and reusability of this catalyst. The unique physicochemical properties resulting from the low-temperature preparation of TiO2 -180℃, including its broadband visible absorption associated with a high concentration of oxygen vacancies, large surface area, and enriched surface -OH/H2O may be responsible for this excellent photocatalytic performance. The use of as-prepared TiO2 -180℃ for practical applications is expected after further optimization.展开更多
Mixed phase TiO2photocatalysts doped with C and Y were synthesized by a sol‐gel process.The effects of C and Y doping and annealing temperatures on the structural and optical properties,and photocatalytic activity we...Mixed phase TiO2photocatalysts doped with C and Y were synthesized by a sol‐gel process.The effects of C and Y doping and annealing temperatures on the structural and optical properties,and photocatalytic activity were investigated.We found that both C and Y doping can broaden the absorption spectrum of TiO2to the visible light region and inhibit recombination of photogenerated electron/hole pairs.The incorporation of Y into the TiO2lattice inhibited growth of crystalline grains,which increased the specific surface area and enhanced the photocatalytic activity.The photocatalytic performance of the samples was investigated in the photocatalytic degradation of methyl blue under visible light irradiation.The rate of methyl blue degradation over the(C,Y)‐co‐doped TiO2sample was much higher than those of undoped TiO2,C‐TiO2,and Y‐TiO2.Additionally,the apparent first‐order rate constant of the co‐doped sample was3.5times as large as that of undoped mix phase TiO2under the same experimental conditions.The enhanced photocatalytic activity can be attributed to the synergic effect of(C,Y)‐co‐doping and the formation of an appropriate crystalline structure.展开更多
Black-colored titanium was obtained by anodic oxidation of a commercially pure grade-1 titanium sheet in a 0.06 M NH4NO3 solution, followed by heat treatment at 773 K for 1 h in a vacuum furnace. The resulting oxide l...Black-colored titanium was obtained by anodic oxidation of a commercially pure grade-1 titanium sheet in a 0.06 M NH4NO3 solution, followed by heat treatment at 773 K for 1 h in a vacuum furnace. The resulting oxide layer on the titanium substrate was examined by X-ray photoelectron spectroscopy, X-ray diffraction, glow discharge spectroscopy, and scanning electron microscopy. It was found that the oxide layer on the black-colored titanium sheet was several micrometers thick and mainly consisted of rutile TiO2 exhibiting a sponge like nanoporous structure. It is considered that the black-colored appearance of the titanium sheet is due to the sponge like nanoporous structure of the oxide layer absorbing the incident light. The photocatalytic activity of the black-colored titanium sheet was examined by observing the decomposition of a methylene blue (MB, C16H18N3SCl) solution under ultraviolet irradiation due to the existence of rutile TiO2. The sheet also exhibited photocatalytic activity under visible light irradiation. It is believed that the photocatalytic response upon irradiation with white light is due to carbon doping of the titanium oxide layer on the titanium substrate.展开更多
Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spect...Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spectroscopy, high-resolution transmis- sion electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. It was found that copper exists in different states (Cu 0 , Cu^(+) , and Cu^(2+) ), the content of which depends on the TiO_(2) calcination temperature and copper loading. The optimum composition of the cocatalyst has a photocatalyst based on TiO_(2) calcined at 700℃ and modified with 5 wt% copper, the activity of which is 22 μmol/(h·g cat ) (409 nm). Analysis of the photocatalysts after the photocatalytic reaction disclosed that the copper metal on the surface of the calcined TiO_(2) was gradually converted into Cu_(2) O during the photocatalytic reaction. Meanwhile, the metallic copper on the surface of the noncalcined TiO_(2) did not undergo any trans- formation during the reaction.展开更多
Anatase phase visible-light-driven TiO_(2) yolk-shell spheres with the size of ca.1-2 um have been synthesized with the combination of solvothermal and heat treatment method.XRD,SEM,TEM,XPS,and PL analysis were used t...Anatase phase visible-light-driven TiO_(2) yolk-shell spheres with the size of ca.1-2 um have been synthesized with the combination of solvothermal and heat treatment method.XRD,SEM,TEM,XPS,and PL analysis were used to examine structure and properties of the photocatalyst.The N species and Ti3+centers introduced into the as-prepared photocatalyst can enhance the visible light absorption significantly.The mesoporous shell of the prepared photocatalyst,which promotes the pollutant adsorption ability,consists of the high-reactive[001]facets dominated nanocrystals.Due to the unique structure,it is also observed that the as-prepared visible-light-driven TiO_(2) yolk-shell spheres exhibit a sunerinr nhnrncatalvtic activity for organic dyes decomposition than the well-known P25.展开更多
基金Project supported by the State Key Laboratory of Urban Water Resource and Environment (HIT 08UWQA05) and National Key Laboratory of Vacuum and Cryogenics Technology and Physics (9140C550201060C55)
文摘Microporous titanium dioxide films were prepared by the sol-gel methods on glass substrates, using tetrabutyl titanate as source material. In order to absorb the visible light and increase the photocatalytic activities, different concentrations of neodymium ions (Nd/Ti molar ratio was 0.5%, 0.7%, 0.9%, and 1.1% respectively) were added into the sol. X-ray diffraction (XRD), X-ray photoelectron spectros-copy (XPS), and atom force microscopy (AFM) were applied to characterize the modified films. A kind of typical textile industry pollutant (Rhodamine B) was used to evaluate the photocatalytic activities of the films under visible light. The results showed that the activities of the films were improved by doping Nd ions into the sol.
文摘We report a new and simple preparation method of the visible light responsive Titanium dioxide (TiO2) photocatalytic films using sol-gel method and ultraviolet light (UV) irradiation. Proposed films were prepared on fused silica plates using titanium tetra-isopropoxide, urea, 2-methoxyethanol, water and UV irradiation. The 650°C-annealed films were carbon-containing anatase type TiO2, not carbon-doped ones. The prepared films absorbed visible light with wavelengths longer than 400 nm. Also, organic dyes were effectively photodegradated by visible light irradiation in the presence of these films.
文摘A commercially pure titanium sheet with titanium carbide (TiC) precipitated in its surface layer was anodized in NH4NO3 aqueous solution and heat treated in air. The photocatalytic activity of titanium dioxide powder collected from the surface of the anodized titanium sheet was evaluated under ultra-violet and visible light irradiation. It showed relatively high photocatalytic activity in 0.1 mol/l potassium iodide solution, which was almost equal to the activity level of TiO2 powder (P-25) manufactured by Degussa Corporation. The better photocatalytic activity under ultra-violet irradiation is considered to be related to the formation of anatase type titanium dioxide. Photocatalytic activity under visible light irradiation was also observed, which was considered to be attributable to impurity doping, (carbon), in the titanium dioxide powder.
文摘A commercially pure titanium sheet precipitated TiC in the surface layer was fabricated by anodic oxidation in NH4NO3 solution and heat treatment in air. The fabricated sheet showed relatively high photocatalytic activity in 0.1 M KI solution, which was close to the activity level of the P-25 particle made by Degussa Corporation. It exhibited photocatalytic activity in antifungal and antivirus tests under black light irradiation. The better photocatalytic activity under black light irradiation is considered to be related to the formation of anatase and rutile type titanium dioxides and rough surface. It also showed photocatalytic activity under visible light irradiation, which is considered to be attributable to carbon and nitrogen doping in titanium dioxide.
基金the National Natural Science Foundation of China(Grant nos.50573052 and 51173116)for supporting this research
文摘A novel visible light active photo-catalyst named CHC/C-PVA/TiO2, the composite of titanium dioxide(TiO2)with conjugated derivative of polyvinyl alcohol(C-PVA) loaded on a cordierite honeycomb ceramic(CHC)substrate, was fabricated by combining the synthesis of TiO2 sol, preparation of C-PVA via thermally treating polyvinyl alcohol, and immobilization of TiO2 sol and C-PVA on CHC. By detecting the change of UV–vis absorption spectra of the model organic pollutant(methyl orange(MO)) in the presence of the composite under visible light irradiation, the photo-catalytic activity was evaluated and the results show that the CHC/C-PVA/TiO2 composite has an enhanced photo-catalytic activity when compared to the CHC/TiO2 composite. Besides, the CHC/C-PVA/TiO2 shows a good photo-catalytic stability after the fourth cycles. The structure analyses by scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy(EDS) show the coexistence of C-PVA and TiO2 on the CHC and the cracks on the surface of CHC/C-PVA/TiO2. Result of ultraviolet-visible diffuse reflection spectroscopy(UV–vis DRS) reveals that the CHC/C-PVA/TiO2 can absorb both ultraviolet and visible light while result of X-ray photoelectron spectroscopy(XPS) indicates the existence of C, O and Ti elements in the CHC/C-PVA/TiO2. The typical structures as well as the optical characteristics of the CHC/C-PVA/TiO2 are responsible for the enhancement in the photo-catalytic activity.
基金supported by the National Natural Science Foundation of China (No.21076196,20977086)the National Basic Research Program (973) of China(No.2009CB421603)the Zhejiang Provincial Natural Science Foundation of China (No.Z5080207)
文摘I-doped titanium dioxide nanospheres (I-TNSs) were synthesized via a two-step hydrothermal synthesis route, their potential for the efficient utilization of visible light was evaluated. The prepared anatase-phase I-TNSs had a bimodal porous size distribution with a Brunauer-Emmett-Teller surface area of 76 m2/g, a crystallite size of approximately 14 nm calculated from X-ray diffraction data, and a remarkable absorption in the visible light region at wavelengths 〉 400 nm. The photocatalytic activity of the samples was evaluated by decoloration of Methyl Orange in aqueous solution under visible light irradiation in comparison to the iodine-doped TiO2 (I-TiO2). The I-TNSs showed higher photocatalytic efficiency compared with I-TiO2 after irradiation for 180 rain even though the latter had a much greater surface area (115 m2/g). It was concluded that the surface area was not the predominant factor determining photocatalytic activity, and that the good crystallization and bimodal porous nanosphere structure were favourable for photocatalysis.
文摘Visible light-induced two-step overall water-splitting was achieved by combining two types of photocatalysts, which were prepared by introducing foreign elements into rutile titanium dioxide (TiO2) and strontium titanate (SrTiO3) with a controlled electronic band structure. Rutile TiO2 and SrTiO3 were doped with chromium and tantalum (Cr,Ta-TiO2) and with rhodium (Rh-SrTiO3), respectively, to introduce visible-light sensitivity. Under irradiation with only visible light from a 420-nm LED lamp, the simultaneous liberation of hydrogen and oxygen with a molar ratio of ~2:1 was achieved with these two types of photocatalysts in the presence of iodate ion/iodide ion as a redox mediator.
基金Project supported by the National Natural Science Foundation of China (41073086)
文摘A novel kind of magnetically separable photocatalyst of cerrium-doped mesoporous titanium dioxide coated magnetite (Ce/MTiO2/ Fe3O4) was prepared and its activities under UV and visible light were reported. The catalysts with Ce/MTiO2 shell and Fe3O4 core were prepared by coating photoactive Ce/MTiO2 onto a magnetic Fe3O4 core through the hydrolysis of tetrabutyltitanate (Ti(OBu)4, TBT) with precursors of ammonium ceric nitrate and TBT in the presence of Fe3O4 particles. The MTiO2 shell was for photocatalysis, the Fe3O4 core was for separation by the magnetic field and the doped Ce was used to enhance the photocatalytic activity of MTiO2. The morphological, structural and optical properties of the prepared samples were characterized by Bnmauer-Emmett-Teller (BET) surface area, transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis absorption spectroscopy. The effect of cerrium-doped content on the photocatalytic activity was studied and the result revealed that 0.5 mol.% Ce/MTiO2/Fe3O4 exhibited highest photoactivity. The photocatalytic activities of obtained photocatalysts under UV and visible light were estimated by measuring the degradation rate of methylene blue (MB, 50 mg/L) in an aqueous solution. The results showed that the prepared photocatalyst was activated by visible light and used as effective catalyst in photooxi- dation reactions. In addition, the possibility of cyclic usage of the prepared photocatalyst was also confirmed. Moreover, Ce/MTiO2 was tightly bound to Fe3O4 and could be easily recovered from the medium by an external magnetic filed. So, the photocatalyst can be reused without any mass loss. It can therefore be potentially applied for the treatment of water contaminated by organic pollutants.
基金Supported the National Natural Science Foundation of China(Nos.21076094 and 21673097).
文摘CdS/m-TiO2 heteroarchitecture with CdS nanocrystals loaded on mesoporous TiO2(m-TiO2) spheres was successfully synthesized via sol-gel method followed by solvothermal treatment. The material with uniform diameter of ca. 750 nm possesses regular mesoporous structure and large specific surface area of 100.5 m2/g. When used to photodegradate Rhodamine B(RB) under visible light, the CdS/m-TiO2 heteroarchitecture exhibits improved photo-catalytic performance in comparison with pure m-TiO2 or CdS. The excellent photocatalytic activity is closely related to the facilitated separation of electron-hole pairs derived from the CdS/m-TiO2 heterojunction and mesoporous structure with high specific surface area and adequately exposed active sites.
基金supported by the National Natural Science Foundation of China(21171174)Provincial Natural Science Foundation of Hunan(09JJ3024)Provincial Environmental Science and Technology Foundation of Hunan~~
文摘A novel visible-light-responding InVO4-Cu2O-TiO2 ternary nanoheterostructure was designed on the basis of the strategy of energy gap engineering and prepared through ordinary wet chemistry methods. The as-prepared nanoheterostructure was characterized by X-ray powder diffraction(XRD), transmission electron microscopy(TEM), high-resolution transmission electron microscopy(HRTEM) and diffuse reflectance ultraviolet-visible spectroscopy(UV-vis/DRS). The TEM and HRTEM images of 10%InVO4-40%Cu2O-50%TiO2 confirm the formation of nanoheterostructures resulting from contact of the nanosized TiO2, Cu2O and InVO4 in the size of 5–20 nm in diameter. The InVO4-Cu2O-TiO2 nanoheterostructure, when compared with TiO2, Cu2O, InVO4, InVO4-TiO2 and Cu2O-TiO2, shows significant enhancement in the photocatalytic performance for the degradation of methyl orange(MO) under visible-light irradiation. With a 9 W energy-saving fluorescent lamp as the visible-light source, the MO degradation rate of 10%InVO4-40%Cu2O-50%TiO2 reaches close to 90% during 5 h, and the photocatalytic efficiency is maintained at over 90% after six cycles. This may be mainly ascribed to the matched bandgap configurations of TiO2, Cu2O and InVO4, and the formations of two p-n junctions by the p-type semiconductor Cu2O with the n-type semiconductors TiO2 and InVO4, all of which favor spatial photogenerated charge carrier separation. The X-ray photoelectron spectroscopy(XPS) characterization for the used 10%InVO4-40%Cu2O-50%TiO2 reveals that only a small shakeup satellite peak appears for Cu(II) species, implying bearable photocorrosion of Cu2O. This work could provide new insight into the design and preparation of novel visible-light-responding semiconductor composites.
基金supported by the National Natural Science Foundation of China(51275203)Key Scientific and Technological Project of Jilin Province(20140204052GX,20180201074GX)+2 种基金China Postdoctoral Science Foundation(2017M611321)Project of Education Department of Jilin Province(JJKH20180130KJ)Open Project of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry,College of Chemistry,Jilin University(2019-8).
文摘Titanium dioxide nanoparticles modified with neodymium in the range of 1 mol% to 5 mol% were prepared with template-free sol-gel method.The structures of obtained samples were characterized by X-ray powder diffraction analysis.X-ray photoelectron spectroscopy,scanning electron microscopy,transmission electron microscopy and diffuse reflectance spectroscopy.The photocatalytic activity of the obtained samples was evaluated by photodegradation of methyl orange in aqueous solution under ultraviolet-visible(λ> 350 nm) and visible(λ> 420 nm) irradiation.The experimental results show that the 1 mol% Nd-doped TiO2 exhibits the highest photocatalytic activity,of which the degradation can reach to 96.5% under visible irradiation.According to the XRD results,the pristine samples are combined with anatase TiO2 and rutile TiO2.while the Nd-doped TiO2 samples are anatase TiO2 only.This transformation has made an obvious promotion of photocatalyst activity after modification.
基金supported by the Australian Research Council(ARC DP150103026)the National Natural Science Foundation of China(51278242)~~
文摘Magnetically separable bismuth ferrite(BiFeO3)nanoparticles were fabricated by a citrate self‐combustion method and coated with titanium dioxide(TiO2)by hydrolysis of titanium butoxide(Ti(OBu)4)to form BiFeO3@TiO2core-shell nanocomposites with different mass ratios of TiO2to BiFeO3.The photocatalytic performance of the catalysts was comprehensively investigated via photocatalytic oxidation of methyl violet(MV)under both ultraviolet and visible‐light irradiation.The BiFeO3@TiO2samples exhibited better photocatalytic performance than either BiFeO3or TiO2alone,and a BiFeO3@TiO2sample with a mass ratio of1:1and TiO2shell thickness of50-100nm showed the highest photo‐oxidation activity of the catalysts.The enhanced photocatalytic activity was ascribed to the formation of a p‐n junction of BiFeO3and TiO2with high charge separation efficiency as well as strong light absorption ability.Photoelectrochemical Mott-Schottky(MS)measurements revealed that both the charge carrier transportation and donor density of BiFeO3were markedly enhanced after introduction of TiO2.The mechanism of MV degradation is mainly attributed to hydroxyl radicals and photogenerated electrons based on energy band theory and the formation of an internal electrostatic field.In addition,the unique core-shell structure of BiFeO3@TiO2also promotes charge transfer at the BiFeO3/TiO2interface by increasing the contact area between BiFeO3and TiO2.Finally,the photocatalytic activity of BiFeO3@TiO2was further confirmed by degradation of other industrial dyes under visible‐light irradiation.
文摘This work presents the visible-light photocatalytic selective oxidation of thiols to disulfides with molecular oxygen(O2) on anatase TiO2. The high specific surface area of anatase TiO2 proved to be especially critical in conferring high photocatalytic activity. Herein, surface complexation between thiol and TiO2 gives rise to photocatalytic activity under irradiation with 520 nm green light-emitting diodes(LEDs), resulting in excellent reaction activity, substrate scope, and functional group tolerance. The transformation was extremely efficient for the selective oxidation of various thiols, particularly with substrates bearing electron-withdrawing groups(reaction times of less than 10 min). To date, the longest wavelength of visible light that this system can utilize is 520 nm by the surface complex of substrate-TiO2. Importantly, O2 was found to act as the electron and proton acceptor, rather than to incorporate into the substrates. Our findings regarding this surface complex-based photocatalytic system can allow one to understand the interaction between the conduction band electrons and O2.
基金supported by the Science and Technology Development Plan Project of Shandong Province(2014GSF117015)the National Basic Research Program of China(973 program,2013CB632401)the National Natural Science Foundation of China(51402145)~~
文摘A different approach to synthesize visible‐light‐active sulfur(S)‐doped reduced titania(S‐TiO2‐x)using thiourea dioxide as both the S source and reductant was developed.The structure,morphology,and optical and electronic properties of the as‐prepared S‐TiO2‐x samples were examined by multiple techniques,such as X‐ray diffraction,transmission electron microscopy,X‐ray photoelectron spectroscopy,ultraviolet‐visible diffuse reflectance spectroscopy,Brunauer‐Emmett‐Teller and photocurrent measurements,and electrochemical impedance spectroscopy.The photocatalytic activity of S‐TiO2‐x was evaluated by photodegradation of organic Rhodamine B under visible‐light irradiation.The degradation rate of Rhodamine B by S‐TiO2‐x obtained by calcination was about31,2.5,and3.6times higher than those of pure TiO2,pristine TiO2‐x,and S‐doped TiO2,respectively.In addition,the as‐prepared S‐TiO2‐x exhibited long‐term stable photocatalytic performance in the degradation of Rhodamine B under visible‐light illumination.This report reveals a new approach to prepare stable and highly efficient solar light‐driven photocatalysts for water purification.
基金supported by Teamwork Project Funded by Guangdong Natural Science Foundation(S2013030012842)~~
文摘particle size (5.0 nm), large specific surface area (213.45 m1 2/g), and efficient response to broadband light over the entire ultraviolet-visible spectrum with a narrow band gap of 1.84 eV. In addition, TiO2 -180℃ exhibited the optimal reaction rate constant for the degradation of methylene blue (0.08287 mg/(Lmin)), which is six times higher than that of the mixed rutile/anatase phase TiO2 photocatalytic standard P25 (0.01342 mg/(L min)). Furthermore, cycling photodegradation ex-periments confirmed the stability and reusability of this catalyst. The unique physicochemical properties resulting from the low-temperature preparation of TiO2 -180℃, including its broadband visible absorption associated with a high concentration of oxygen vacancies, large surface area, and enriched surface -OH/H2O may be responsible for this excellent photocatalytic performance. The use of as-prepared TiO2 -180℃ for practical applications is expected after further optimization.
基金supported by the National High Technology Research and Development Program of China(863 Program,2015AA034601)the Natural Science Foundation of Yunnan Province(2016FB084)+1 种基金the Scientific Research Foundation of the Department of Education of Yunnan Province(2015Z003)the Open Fund of Yunnan Key Laboratory for Micro/nano Materials&Technology(ZZ2016006)~~
文摘Mixed phase TiO2photocatalysts doped with C and Y were synthesized by a sol‐gel process.The effects of C and Y doping and annealing temperatures on the structural and optical properties,and photocatalytic activity were investigated.We found that both C and Y doping can broaden the absorption spectrum of TiO2to the visible light region and inhibit recombination of photogenerated electron/hole pairs.The incorporation of Y into the TiO2lattice inhibited growth of crystalline grains,which increased the specific surface area and enhanced the photocatalytic activity.The photocatalytic performance of the samples was investigated in the photocatalytic degradation of methyl blue under visible light irradiation.The rate of methyl blue degradation over the(C,Y)‐co‐doped TiO2sample was much higher than those of undoped TiO2,C‐TiO2,and Y‐TiO2.Additionally,the apparent first‐order rate constant of the co‐doped sample was3.5times as large as that of undoped mix phase TiO2under the same experimental conditions.The enhanced photocatalytic activity can be attributed to the synergic effect of(C,Y)‐co‐doping and the formation of an appropriate crystalline structure.
文摘Black-colored titanium was obtained by anodic oxidation of a commercially pure grade-1 titanium sheet in a 0.06 M NH4NO3 solution, followed by heat treatment at 773 K for 1 h in a vacuum furnace. The resulting oxide layer on the titanium substrate was examined by X-ray photoelectron spectroscopy, X-ray diffraction, glow discharge spectroscopy, and scanning electron microscopy. It was found that the oxide layer on the black-colored titanium sheet was several micrometers thick and mainly consisted of rutile TiO2 exhibiting a sponge like nanoporous structure. It is considered that the black-colored appearance of the titanium sheet is due to the sponge like nanoporous structure of the oxide layer absorbing the incident light. The photocatalytic activity of the black-colored titanium sheet was examined by observing the decomposition of a methylene blue (MB, C16H18N3SCl) solution under ultraviolet irradiation due to the existence of rutile TiO2. The sheet also exhibited photocatalytic activity under visible light irradiation. It is believed that the photocatalytic response upon irradiation with white light is due to carbon doping of the titanium oxide layer on the titanium substrate.
基金supported by Russian Science Foundation (No.#21-73-10235)
文摘Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spectroscopy, high-resolution transmis- sion electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. It was found that copper exists in different states (Cu 0 , Cu^(+) , and Cu^(2+) ), the content of which depends on the TiO_(2) calcination temperature and copper loading. The optimum composition of the cocatalyst has a photocatalyst based on TiO_(2) calcined at 700℃ and modified with 5 wt% copper, the activity of which is 22 μmol/(h·g cat ) (409 nm). Analysis of the photocatalysts after the photocatalytic reaction disclosed that the copper metal on the surface of the calcined TiO_(2) was gradually converted into Cu_(2) O during the photocatalytic reaction. Meanwhile, the metallic copper on the surface of the noncalcined TiO_(2) did not undergo any trans- formation during the reaction.
文摘Anatase phase visible-light-driven TiO_(2) yolk-shell spheres with the size of ca.1-2 um have been synthesized with the combination of solvothermal and heat treatment method.XRD,SEM,TEM,XPS,and PL analysis were used to examine structure and properties of the photocatalyst.The N species and Ti3+centers introduced into the as-prepared photocatalyst can enhance the visible light absorption significantly.The mesoporous shell of the prepared photocatalyst,which promotes the pollutant adsorption ability,consists of the high-reactive[001]facets dominated nanocrystals.Due to the unique structure,it is also observed that the as-prepared visible-light-driven TiO_(2) yolk-shell spheres exhibit a sunerinr nhnrncatalvtic activity for organic dyes decomposition than the well-known P25.