期刊文献+
共找到8,653篇文章
< 1 2 250 >
每页显示 20 50 100
Recent Progress in Improving Rate Performance of Cellulose-Derived Carbon Materials for Sodium-Ion Batteries
1
作者 Fujuan Wang Tianyun Zhang +2 位作者 Tian Zhang Tianqi He Fen Ran 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期102-147,共46页
Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge... Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge to achieve high power density sodium-ion batteries.The present review comprehensively elucidates the structural characteristics of cellulose-based materials and cellulose-derived carbon materials,explores the limitations in enhancing rate performance arising from ion diffusion and electronic transfer at the level of cellulose-derived carbon materials,and proposes corresponding strategies to improve rate performance targeted at various precursors of cellulose-based materials.This review also presents an update on recent progress in cellulose-based materials and cellulose-derived carbon materials,with particular focuses on their molecular,crystalline,and aggregation structures.Furthermore,the relationship between storage sodium and rate performance the carbon materials is elucidated through theoretical calculations and characterization analyses.Finally,future perspectives regarding challenges and opportunities in the research field of cellulose-derived carbon anodes are briefly highlighted. 展开更多
关键词 CELLULOSE Hard carbon Anode materials Rate performance Sodium-ion batteries
下载PDF
Unlocking the potential of ultra-thin two-dimensional antimony materials:Selective growth and carbon coating for efficient potassium-ion storage
2
作者 Dongyu Zhang Zhaomin Wang +4 位作者 Yabin Shen Yeguo Zou Chunli Wang Limin Wang Yong Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期440-449,共10页
Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused b... Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused by huge volume change and limited ion transportation hinders their practical applications.Recently,strategies for controlling the morphologies of Sb-based materials to improve the electrochemical performances have been proposed.Among these,the two-dimensional Sb(2D-Sb)materials present excellent properties due to shorted ion immigration paths and enhanced ion diffusion.Nevertheless,the synthetic methods are usually tedious,and even the mechanism of these strategies remains elusive,especially how to obtain large-scale 2D-Sb materials.Herein,a novel strategy to synthesize 2D-Sb material using a straightforward solvothermal method without the requirement of a complex nanostructure design is provided.This method leverages the selective adsorption of aldehyde groups in furfural to induce crystal growth,while concurrently reducing and coating a nitrogen-doped carbon layer.Compared to the reported methods,it is simpler,more efficient,and conducive to the production of composite nanosheets with uniform thickness(3–4 nm).The 2D-Sb@NC nanosheet anode delivers an extremely high capacity of 504.5 mA h g^(-1) at current densities of 100 mA g^(-1) and remains stable for more than 200 cycles.Through characterizations and molecular dynamic simulations,how potassium storage kinetics between 2D Sb-based materials and bulk Sb-based materials are explored,and detailed explanations are provided.These findings offer novel insights into the development of durable 2D alloy-based anodes for next-generation potassium-ion batteries. 展开更多
关键词 ANTIMONY Two-dimensional materials Selective growth Nitrogen-doped carbon Potassium-ion batteries
下载PDF
The preparation and properties of N-doped carbon materials and their use for sodium storage
3
作者 YUAN Ren-lu HOU Ruo-yang +4 位作者 SHANG Lei LIU Xue-wei LI Ang CHEN Xiao-hong SONG Huai-he 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期770-795,共26页
Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applicatio... Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applications.N-doping has been widely investigated because of its similar atom radius to carbon,high electronegativity as well as many different configurations.We summarize the preparation methods and properties of N-doped carbon materials,and discuss their possible use in sodium ion storage.The relationships between N content/configuration and crystallinity,electronic conductivity,wettability,chemical reactivity as well as sodium ion storage performance are discussed. 展开更多
关键词 N-doped carbon material N configuration Preparation method Performance Sodium storage
下载PDF
High-efficiently doping nitrogen in kapok fiber-derived hard carbon used as anode materials for boosting rate performance of sodium-ion batteries
4
作者 Tianyun Zhang Tian Zhang +1 位作者 Fujuan Wang Fen Ran 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期472-482,共11页
The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performan... The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performance is mainly caused by lack of pyridine nitrogen,which often tends to escape because of high temperature in preparation process of hard carbon.In this paper,a high-rate kapok fiber-derived hard carbon is fabricated by cross-linking carboxyl group in 2,6-pyridinedicarboxylic acid with the exposed hydroxyl group on alkalized kapok with assistance of zinc chloride.Specially,a high nitrogen doping content of 4.24%is achieved,most of which are pyridine nitrogen;this is crucial for improving the defect sites and electronic conductivity of hard carbon.The optimized carbon with feature of high nitrogen content,abundant functional groups,degree of disorder,and large layer spacing exhibits high capacity of 401.7 mAh g^(−1)at a current density of 0.05 A g^(−1),and more importantly,good rate performance,for example,even at the current density of 2 A g^(−1),a specific capacity of 159.5 mAh g^(−1)can be obtained.These findings make plant-based hard carbon a promising candidate for commercial application of sodium-ion batteries,achieving high-rate performance with the enhanced pre-cross-linking interaction between plant precursors and dopants to optimize aromatization process by auxiliary pyrolysis. 展开更多
关键词 Kapok fiber Hard carbon Electrode materials Rate performance Sodium-ion batteries
下载PDF
Exploring the potential of olivine-containing copper-nickel slag for carbon dioxide mineralization in cementitious materials
5
作者 Qianqian Wang Zequn Yao +1 位作者 Lijie Guo Xiaodong Shen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期562-573,共12页
Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementi... Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementitious material(CNCM)was synthesized by using different chemical activation methods to enhance its hydration reactivity and CO_(2) mineralization capacity.Different water curing ages and carbonation conditions were explored related to their carbonation and mechanical properties development.Meanwhile,thermogravimetry differential scanning calorimetry and X-ray diffraction methods were applied to evaluate the CO_(2) adsorption amount and carbonation products of CNCM.Microstructure development of carbonated CNCM blocks was examined by backscattered electron imaging(BSE)with energy-dispersive X-ray spectrometry.Results showed that among the studied samples,the CNCM sample that was subjected to water curing for 3 d exhibited the highest CO_(2) sequestration amount of 8.51wt%at 80℃and 72 h while presenting the compressive strength of 39.07 MPa.This result indicated that 1 t of this CNCM can sequester 85.1 kg of CO_(2) and exhibit high compressive strength.Although the addition of citric acid did not improve strength development,it was beneficial to increase the CO_(2) diffusion and adsorption amount under the same carbonation conditions from BSE results.This work provides guidance for synthesizing CO_(2)-mineralized cementitious materials using large amounts of metallurgical slags containing olivine minerals. 展开更多
关键词 copper-nickel slag FAYALITE CO_(2)sequestration cementitious material ADMIXTURES carbonation conditions
下载PDF
Research Progress of Carbon-Silicone Composite Materials
6
作者 Beibei Liu Rongjie Kan 《Expert Review of Chinese Chemical》 2024年第2期1-7,共7页
Silicone is a kind of polymer material with high cross-linked structure,which is com-posed by Si-O-Si main chain.Due to the special molecular chain structure,silicone mate-rials are characterized by oxidation resistan... Silicone is a kind of polymer material with high cross-linked structure,which is com-posed by Si-O-Si main chain.Due to the special molecular chain structure,silicone mate-rials are characterized by oxidation resistance,aging resistance,high and low temperature resistance and chemical corrosion resistance.Moreover,silicone materials have process-able properties,simple forming process,good mechanical property,non-toxic and pollution-free.Therefore,silicone has been widely concerned by researchers at home and abroad.In this paper,the main research progress and application directions of carbon-silicone composite at home and abroad in recent years are reviewed. 展开更多
关键词 carbon materials GRAPHEME SILICONE composite materials
下载PDF
Preparation and oxidation resistance of mullite/SiC coating for carbon materials at 1150 ℃ 被引量:7
7
作者 杨鑫 苏哲安 +1 位作者 黄启忠 柴立元 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期2997-3002,共6页
To protect carbon materials from oxidation, mullite/SiC coatings were prepared on graphite by chemical vapor reaction (CVR) and slurry sintering. The XRD analyses show that the phase of the outer-layer coating is comp... To protect carbon materials from oxidation, mullite/SiC coatings were prepared on graphite by chemical vapor reaction (CVR) and slurry sintering. The XRD analyses show that the phase of the outer-layer coating is composed of SiO2 and mullite, and the inner-layer coating is mainly composed of β-SiC. The anti-oxidation behavior of the coating and the Rockwell hardness (HRB) of the coating after oxidation were investigated. The oxidation test shows that the as-prepared multi-layer coating exhibits excellent antioxidation and thermal shock resistance at high temperature. After oxidation at 1150 ℃ for 109 h and thermal shock cycling between 1150 ℃ and room temperature for 12 times, the mass gain of the coated sample is 0.085%. Meanwhile, the indentation tests also demonstrate that the as-prepared coating has good bonding ability between the layers. 展开更多
关键词 carbon materials oxidation resistance COATING SIC MULLITE
下载PDF
Effect of carbon fiber on thermal properties of n-Docosane phase change materials 被引量:3
8
作者 李敏 吴智深 +1 位作者 陈振乾 彭昌海 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期346-350,共5页
The improvement of the heat transfer rate of phase change material(PCM)is studied by mixing with carbon fiber(CF)which is a good heat conductor.The composite PCM is prepared by blending CF and n-Docosane and its t... The improvement of the heat transfer rate of phase change material(PCM)is studied by mixing with carbon fiber(CF)which is a good heat conductor.The composite PCM is prepared by blending CF and n-Docosane and its thermal performance is tested using the method of differential scanning calorimetry(DSC)analysis and thermogravimetric/differential thermal analysis(TG/DTA).In addition,the influence of the mixing amount and the length of CF on the thermal conductivity of n-Docosane are investigated.The results show that CF can significantly improve the heat transfer rate of n-Docosane,and the mixing amount and the length of CF are two influence factors.The heat storage and release rates increase with the increase in the mixing amount of CF.Moreover,the melting point of n-Docosane is increased from 40.2 to 50.8 ℃ after being mixed with CF.The heating time is decreased from 720 to 660 s by mixing with 6% of CF,and is decreased to 600 s by mixing with 10% of CF. 展开更多
关键词 phase change material carbon fiber thermal conductivity n-Docosane
下载PDF
Porous framework materials for energy&environment relevant applications:A systematic review 被引量:2
9
作者 Yutao Liu Liyu Chen +16 位作者 Lifeng Yang Tianhao Lan Hui Wang Chenghong Hu Xue Han Qixing Liu Jianfa Chen Zeming Feng Xili Cui Qianrong Fang Hailong Wang Libo Li Yingwei Li Huabin Xing Sihai Yang Dan Zhao Jinping Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期217-310,共94页
Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and eff... Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and efficiency reinforcement,carbon capture,and pollutant gas treatment is in highly imperious demand.The emerging porous framework materials such as metal–organic frameworks(MOFs),covalent organic frameworks(COFs)and hydrogen-bonded organic frameworks(HOFs),owing to the permanent porosity,tremendous specific surface area,designable structure and customizable functionality,have shown great potential in major energy-consuming industrial processes,including sustainable energy gas catalytic conversion,energy-efficient industrial gas separation and storage.Herein,this manuscript presents a systematic review of porous framework materials for global and comprehensive energy&environment related applications,from a macroscopic and application perspective. 展开更多
关键词 Porous framework materials CATALYSIS SEPARATION Gas storage carbon neutrality
下载PDF
Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and thermal runaway propagation mitigation 被引量:1
10
作者 Xinyi Dai Ping Ping +4 位作者 Depeng Kong Xinzeng Gao Yue Zhang Gongquan Wang Rongqi Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期226-238,I0006,共14页
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan... Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well. 展开更多
关键词 Inorganic phase change material carbon nanotube Battery thermal management Thermal runaway propagation Fire resistance ENCAPSULATION
下载PDF
Biomass-derived porous carbon materials for advanced lithium sulfur batteries 被引量:15
11
作者 Poting Liu Yunyi Wang Jiehua Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期171-185,共15页
Biomass, as the most widely used carbon sources, is the main ingredient in the formation of fossil fuels. Biomass-derived novel carbons(BDNCs) have attracted much attention because of its adjustable physical/chemical ... Biomass, as the most widely used carbon sources, is the main ingredient in the formation of fossil fuels. Biomass-derived novel carbons(BDNCs) have attracted much attention because of its adjustable physical/chemical properties, environmentally friendliness, and considerable economic value. Nature contributes to the biomass with bizarre microstructures with micropores, mesopores or hierarchical pores.Currently, it has been confirmed that biomass has great potential applications in energy storage devices,especially in lithium-sulfur(Li–S) batteries. In this article, the synthesis and function of BDNCs for Li–S batteries are presented, and the electrochemical effects of structural diversity, porosity and surface heteroatom doping of the carbons in Li-S batteries are discussed. In addition, the economic benefits, new trends and challenges are also proposed for further design excellent BDNCs for Li–S batteries. 展开更多
关键词 Biomass-derived carbon materials Lithium-sulfur battery Porous carbon Carbohydrate Cellulose
下载PDF
A perspective on carbon materials for future energy application 被引量:16
12
作者 Dang Sheng Su Gabriele Centi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期151-173,共23页
Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and ou... Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and outlooks in this exciting area, with the effort of evidencing some of the possibilities offered from the growing level of knowledge, as testified from the exponentially rising number of publications, and putting bases for a more rational design of these nanomaterials. The basic members of the new carbon family are fullerene, graphene, and carbon nanotube. Derived from them are carbon quantum dots, nanohorn, nanofiber, nano ribbon, nanocapsulate, nanocage and other nanomorphologies. Second generation nanocarbons are those which have been modified by surface functionalization or doping with heteroatoms to create specific tailored properties. The third generation of nanocarbons is the nanoarchitectured supramolecular hybrids or composites of the first and second genera- tion nanocarbons, or with organic or inorganic species. The advantages of the new carbon materials, relating to the field of sustainable energy, are discussed, evidencing the unique properties that they offer for developing next generation solar devices and energy storage solutions. 展开更多
关键词 NANOcarbon CNT GRAPHENE hybrid carbon materials sustainable energy energy storage and conversion solar cells Li-batteries supercapac-itors
下载PDF
Decomposition characteristics of organic materials and their effects on labile and recalcitrant organic carbon fractions in a semi-arid soil under plastic mulch and drip irrigation 被引量:9
13
作者 hu juan wu jinggui qu xiaojing 《Journal of Arid Land》 SCIE CSCD 2018年第1期115-128,共14页
Labile organic carbon (LC) and recalcitrant organic carbon (RC) are two major fractions of soil organic carbon (SOC) and play a critical role in organic carbon turnover and sequestration. The aims of this study ... Labile organic carbon (LC) and recalcitrant organic carbon (RC) are two major fractions of soil organic carbon (SOC) and play a critical role in organic carbon turnover and sequestration. The aims of this study were to evaluate the variations of LC and RC in a semi-arid soil (Inner Mongolia, China) under plastic mulch and drip irrigation after the application of organic materials (OMs), and to explore the effects of OMs from various sources on LC and RC by probing the decomposition characteristics of OMs using in-situ nylon mesh bags burying method. The field experiment included seven treatments, i.e., chicken manure (CM), sheep manure (SM), mushroom residue (MR), maize straw (MS), fodder grass (FG), tree leaves (TL) and no OMs as a control (CK). Soil LC and RC were separated by Huygens D's method (particle size-density), and the average soil mass recovery rate and carbon recovery rate were above 95%, which indicated this method was suitable for carbon pools size analysis. The LC and RC contents significantly (P〈0.01) increased after the application of OMs. Moreover, LC and RC contents were 3.2%-8.6% and 5.0%-9.4% higher in 2016 than in 2015. The applications of CM and SM significantly increased (P〈0,01) LC content and LC/SOC ratio, whereas they were the lowest after the application of TL. However, SOC and RC contents were significantly higher (P〈0.01) after the applications of TL and MS. The correlation analysis indicated the decomposition rate of OMs was positively related with LC content and LC/SOC ratio. In addition, lignin, polyphenol, WOM (total water-soluble organic matter), WHA (water-soluble humic acid), HSL (humicdike substance) and HAL (humic acid-like) contents in initial OMs played important roles in SOC and RC. In-situ nylon mesh bags burying experiment indicated the decomposition rates of CM, SM and MS were significantly higher than those of MR, FG, and TL. Furthermore, MS could result in more lignin derivatives, WHA, and HAL polymers in shorter time during the decomposition process. In conclusion, the application of MS in the semi-arid soil under a long-term plastic mulch and drip irrigation condition could not only improve soil fertility, but also enhance soil carbon sequestration. 展开更多
关键词 organic materials labile organic carbon recalcitrant organic carbon decomposition characteristics plasticmulch drip irrigation Inner Mongolia
下载PDF
Functional porous carbon-based composite electrode materials for lithium secondary batteries 被引量:5
14
作者 Kai Zhang Zhe Hu Jun Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期214-225,共12页
The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great break... The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries. 展开更多
关键词 porous carbons functional materials composite electrode materials synthetic method lithium secondary batteries
下载PDF
Research progress on carbon materials as negative electrodes in sodium-and potassium-ion batteries 被引量:13
15
作者 Yang-yang Zhu Yu-hua Wang +2 位作者 Yi-tong Wang Tian-jie Xu Pei Chang 《Carbon Energy》 SCIE CAS 2022年第6期1182-1213,共32页
Carbon materials,including graphite,hard carbon,soft carbon,graphene,and carbon nanotubes,are widely used as high-performance negative electrodes for sodium-ion and potassium-ion batteries(SIBs and PIBs).Compared with... Carbon materials,including graphite,hard carbon,soft carbon,graphene,and carbon nanotubes,are widely used as high-performance negative electrodes for sodium-ion and potassium-ion batteries(SIBs and PIBs).Compared with other materials,carbon materials are abundant,low-cost,and environmentally friendly,and have excellent electrochemical properties,which make them especially suitable for negative electrode materials of SIBs and PIBs.Compared with traditional carbon materials,modifications of the morphology and size of nanomaterials represent effective strategies to improve the quality of electrode materials.Different nanostructures make different contributions toward improving the electrochemical performance of electrode materials,so the synthesis of nanomaterials is promising for controlling the morphology and size of electrode materials.This paper reviews the progress made and challenges in the use of carbon materials as negative electrode materials for SIBs and PIBs in recent years.The differences in Na+and K+storage mechanisms among different types of carbon materials are emphasized. 展开更多
关键词 carbon material GRAPHENE hard carbon negative electrode sodium/potassium-ion batteries
下载PDF
Early Carbonation Behavior of High-volume Dolomite Powder-cement Based Materials 被引量:4
16
作者 杨华美 何真 SHAO Yixin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第3期541-549,共9页
Combined with DTG analysis, X-Ray diffraction analysis (XRD) and field emission scanning electron microscopy analysis (FSEM) affiliated with energy dispersive spectrometer analysis (EDS), the early hydration and... Combined with DTG analysis, X-Ray diffraction analysis (XRD) and field emission scanning electron microscopy analysis (FSEM) affiliated with energy dispersive spectrometer analysis (EDS), the early hydration and carbonation behavior of cement paste compacts incorporated with 30% of dolomite powder at low water to cement ratio (0.15) was investigated. The results showed that early carbonation curing was capable of developing rapid early strength. It is noted that the carbonation duration should be strictly controlled otherwise subsequent hydration might be hindered. Dolomite powder acted as nuclei of crystallization, resulting in acceleration of products formation and refinement of products crystal size. Therefore, as for cement-based material, it was found that early carbonation could reduce cement dosages to a large extent and promote rapid strength gain resulting from rapid formation of products, supplemental enhancement due to water release in the reaction of carbonation, and formation ofnanometer CaCO3 skeleton network at early age. 展开更多
关键词 dolomite powder cement based material early carbonation mechanism MICROSTRUCTURE
下载PDF
A Review on Metal-Organic Framework-Derived Porous Carbon-Based Novel Microwave Absorption Materials 被引量:25
17
作者 Zhiwei Zhang Zhihao Cai +5 位作者 Ziyuan Wang Yaling Peng Lun Xia Suping Ma Zhanzhao Yin Yi Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第4期1-29,共29页
The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar st... The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar stealth for protecting the weapons from being detected.Many nanomaterials were studied as MAMs,but not all of them have the satisfactory performance.Recently,metal-organic frameworks(MOFs) have attracted tremendous attention owing to their tunable chemical structures,diverse properties,large specific surface area and uniform pore distribution.MOF can transform to porous carbon(PC) which is decorated with metal species at appropriate pyrolysis temperature.However,the loss mechanism of pure MOF-derived PC is often relatively simple.In order to further improve the MA performance,the MOFs coupled with other loss materials are a widely studied method.In this review,we summarize the theories of MA,the progress of different MOF-derived PC-based MAMs,tunable chemical structures incorporated with dielectric loss or magnetic loss materials.The different MA performance and mechanisms are discussed in detail.Finally,the shortcomings,challenges and perspectives of MOF-derived PC-based MAMs are also presented.We hope this review could provide a new insight to design and fabricate MOF-derived PC-based MAMs with better fundamental understanding and practical application. 展开更多
关键词 Metal-organic frameworks Porous carbon Microwave absorption material Reflection loss Effective absorption bandwidth
下载PDF
Promise of commercialization: Carbon materials for low-cost perovskite solar cells 被引量:4
18
作者 蔡宇 梁禄生 高鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第1期19-36,共18页
Perovskite solar cells (PVSCs) have attracted extensive studies due to their high power conversion efficiency (PCE) with low-cost in both raw material and processes. However, there remain obstacles that hinder the... Perovskite solar cells (PVSCs) have attracted extensive studies due to their high power conversion efficiency (PCE) with low-cost in both raw material and processes. However, there remain obstacles that hinder the way to their commer- cialization. Among many drawbacks in PVSCs, we note the problems brought by the use of noble metal counter electrodes (CEs) such as gold and silver. The costly Au and Ag need high energy-consumption thermal evaporation process which can be made only with expensive evaporation equipment under vacuum. All the factors elevate the threshold of PVSCs' commercialization. Carbon material, on the other hand, is a readily available electrode candidate for the application as CE in the PVSCs. In this review, endeavors on PVSCs with low-cost carbon materials will be comprehensively discussed based on different device structures and carbon compositions. We believe that the PVSCs with carbon-based CE hold the promise of commercialization of this new technology. 展开更多
关键词 perovskite solar cell counter electrode carbon material COMMERCIALIZATION
下载PDF
Status and Opportunities of Zinc Ion Hybrid Capacitors: Focus on Carbon Materials, Current Collectors, and Separators 被引量:8
19
作者 Yanyan Wang Shirong Sun +2 位作者 Xiaoliang Wu Hanfeng Liang Wenli Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期73-111,共39页
Zinc ion hybrid capacitors(ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applic... Zinc ion hybrid capacitors(ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applications. Carbon-based materials are deemed the competitive candidates for cathodes of ZIHC due to their cost-effectiveness, high electronic conductivity, chemical inertness, controllable surface states, and tunable pore architectures. In recent years, great research efforts have been devoted to further improving the energy density and cycling stability of ZIHCs. Reasonable modification and optimization of carbon-based materials offer a remedy for these challenges. In this review, the structural design, and electrochemical properties of carbon-based cathode materials with different dimensions, as well as the selection of compatible, robust current collectors and separators for ZIHCs are discussed. The challenges and prospects of ZIHCs are showcased to guide the innovative development of carbon-based cathode materials and the development of novel ZIHCs. 展开更多
关键词 Zinc ion hybrid capacitors carbon materials carbon cathode Current collectors SEPARATORS
下载PDF
Tempura-like carbon/carbon composite as advanced anode materials for K-ion batteries 被引量:8
20
作者 Hao-Jie Liang Zhen-Yi Gu +7 位作者 Xue-Ying Zheng Wen-Hao Li Ling-Yun Zhu Zhong-Hui Sun Yun-Feng Meng Hai-Yue Yu Xian-Kun Hou Xing-Long Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期589-598,I0012,共11页
Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To pr... Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To protect the layer structure and further boost performance,tempura-like carbon/carbon nanocomposite of graphite@pitch-derived S-doped carbon(G@PSC)is designed and prepared by a facile and low-temperature modified molten salt method.This robust encapsulation structure makes their respective advantages complementary to each other,showing mutual promotion of electrochemical performances caused by synergy effect.As a result,the G@PSC electrode is applied in KIBs,delivering impressive rate capabilities(465,408,370,332,290,and 227 m A h g^(-1)at 0.05,0.2,0.5,1,2,and 5 A g^(-1))and ultralong cyclic stability(163 m A g^(-1)remaining even after 8000 cycles at 2 A g^(-1)).On basis of ex-situ studies,the sectionalized K-storage mechanism with adsorption(pseudocapacitance caused by S doping)-intercalation(pitch-derived carbon and graphite)pattern is revealed.Moreover,the exact insights into remarkable rate performances are taken by electrochemical kinetics tests and density functional theory calculation.In a word,this study adopts a facile method to synthesize high-performance carbon/carbon nanocomposite and is of practical significance for development of carbonaceous anode in KIBs. 展开更多
关键词 K-ion batteries Anode materials carbon/carbon composite S doping Cyclic stability DFT calculation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部