期刊文献+
共找到6,672篇文章
< 1 2 250 >
每页显示 20 50 100
Enhanced activation of peroxymonosulfate by Fe/N co-doped ordered mesoporous carbon with dual active sites for efficient removal of m-cresol 被引量:1
1
作者 Donghui Li Wenzhe Wu +6 位作者 Xue Ren Xixi Zhao Hongbing Song Meng Xiao Quanhong Zhu Hengjun Gai Tingting Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期130-144,共15页
The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,th... The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,the complexation of N elements in urea could anchor Fe,and the formation of C3N4during urea pyrolysis could also prevent migration and aggregation of Fe species,which jointly improve the dispersion and stability of Fe.The FeN4sites and highly dispersed Fe nanoparticles synergistically trigger the dual-site peroxymonosulfate (PMS) activation for highly efficient m-cresol degradation,while the ordered mesoporous structure of the catalyst could improve the mass transfer rate of the catalytic process,which together promote catalytic degradation of m-cresol by PMS activation.Reactive oxygen species (ROS) analytic experiments demonstrate that the system degrades m-cresol by free radical pathway mainly based on SO_(4)^(-)·and·OH,and partially based on·OH as the active components,and a possible PMS activation mechanism by 5Fe-50 for m-cresol degradation was proposed.This study can provide theoretical guidance for the preparation of efficient and stable catalysts for the degradation of organic pollutants by activated PMS. 展开更多
关键词 Degradation PEROXYMONOSULFATE Fe(II)/Fe(III)/FeN4 Ordered mesopores carbon Catalyst Radical
下载PDF
Stable immobilization of lithium polysulfides using three-dimensional ordered mesoporous Mn_(2)O_(3) as the host material in lithium-sulfur batteries
2
作者 Sung Joon Park Yun Jeong Choi +6 位作者 Hyun-seung Kim Min Joo Hong Hongjun Chang Janghyuk Moon Young-Jun Kim Junyoung Mun Ki Jae Kim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期99-112,共14页
Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the c... Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs. 展开更多
关键词 host material lithium-sulfur battery ordered mesoporous structure shuttle effect transition-metal oxides
下载PDF
Ordered mesoporous materials for water pollution treatment:Adsorption and catalysis
3
作者 Peng Zhang Mingming He +4 位作者 Wei Teng Fukuan Li Xinyuan Qiu Kexun Li Hao Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1239-1256,共18页
To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environment... To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environmental processing applications due to their exceptionally high surface areas,large pore sizes,and enough pore volumes.These properties might enhance the performance of materials concerning adsorption/catalysis capability,durability,and stability.In this review,we enumerate the ordered mesoporous materials as adsorbents/catalysts and their modifications in water pollution treatment from the past decade,including heavy metals(Hg^(2+),Pb^(2+),Cd^(2+),Cr^(6+),etc.),toxic anions(nitrate,phosphate,fluoride,etc.),and organic contaminants(organic dyes,antibiotics,etc.).These contributions demonstrate a deep understanding of the synergistic effect between the incorporated framework and homogeneous active centers.Besides,the challenges and perspectives of the future developments of ordered mesoporous materials in wastewater treatment are proposed.This work provides a theoretical basis and complete summary for the application of ordered mesoporous materials in the removal of contaminants from aqueous solutions. 展开更多
关键词 Water pollution treatment Ordered mesoporous materials Toxic contaminants ADSORPTION CATALYSIS
下载PDF
Tetraethylenepentamine-functionalized magnetic mesoporous composites as a novel adsorbent for the removal Cr(Ⅲ)-ethylenediaminetetraacetic acid in complex solution
4
作者 Zhi Hu Jiahong Wang Tongtong Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期16-26,共11页
A novel tetraethylenepentamine(TEPA) functionalized magnetic mesoporous silica adsorbent(FNMs/TEPA) was prepared for the adsorption of Cr(Ⅲ)-ethylenediaminetetraacetic acid(EDTA)from wastewater. The characterization ... A novel tetraethylenepentamine(TEPA) functionalized magnetic mesoporous silica adsorbent(FNMs/TEPA) was prepared for the adsorption of Cr(Ⅲ)-ethylenediaminetetraacetic acid(EDTA)from wastewater. The characterization of the prepared adsorbent certified that TEPA was modified onto the magnetic mesoporous silicon(FNMs), while FNMs/TEPA maintained the ordered mesoporous and pristine magnetic properties. The batch adsorption experiments demonstrated that TEPA significantly enhanced the removal capacity of the adsorbent for Cr(Ⅲ)-EDTA. FNMs/TEPA exhibited an excellent adsorption property(13.84 mg·g-1) at p H 4.0. Even in the presence of high concentrations of coexisting ions and organic acids, the adsorption performance of FNMs/TEPA was stable. Experimental characterization and DFT demonstrated that the adsorption of Cr(Ⅲ)-EDTA was ascribed to the electrostatic interaction, hydrogen bonding, and complexation between Cr(Ⅲ)-EDTA and amino groups on the adsorbent surface. The analysis of the independent gradient model(IGM) shows that electrostatic interaction is the main mode of action in the adsorption process. Moreover, FNMs/TEPA demonstrated remarkable reusability in three regeneration cycles. These findings indicated that FNMs/TEPA possessed excellent application prospects in the disposal of wastewater containing Cr(Ⅲ)-EDTA. 展开更多
关键词 TEPA functionalized magnetic mesoporous silicon Adsorption Cr(III)-EDTA Density functional theory calculations
下载PDF
Core-shell mesoporous carbon hollow spheres as Se hosts for advanced Al-Se batteries
5
作者 Haiping Lei Tianwei Wei +1 位作者 Jiguo Tu Shuqiang Jiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期899-906,共8页
Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challen... Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products.In this work,we aim to harness the advantages of Se while reducing its limitations by preparing a core-shell mesoporous carbon hollow sphere with a titanium nitride(C@TiN)host to load 63.9wt%Se as the positive electrode material for Al-Se batteries.Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN,the obtained core-shell mesoporous carbon hollow spheres coated with Se(Se@C@TiN)display superior utilization of the active material and remarkable cycling stability.As a result,Al-Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g^(-1)at a current density of 1000 mA·g^(-1)while maintaining a discharge specific capacity of 86.0 mAh·g^(-1)over 200 cycles.This improved cycling performance is ascribed to the high electrical conductivity of the core-shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN. 展开更多
关键词 aluminum-selenium batteries intermediate products core-shell mesoporous carbon hollow sphere cycling performance
下载PDF
Hard-carbon hybrid Li-ion/metal anode enabled by preferred mesoporous uniform lithium growth mechanism
6
作者 Fang Yan Yan Liu +11 位作者 Yuan Li Yan Wang Zicen Deng Meng Li Zhenwei Zhu Aohan Zhou Ting Li Jingyi Qiu Gaoping Cao Shaobo Huang Biyan Wang Hao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期252-259,I0006,共9页
To achieve high energy density in lithium batteries,the construction of lithium-ion/metal hybrid anodes is a promising strategy.In particular,because of the anisotropy of graphite,hybrid anode formed by graphite/Li me... To achieve high energy density in lithium batteries,the construction of lithium-ion/metal hybrid anodes is a promising strategy.In particular,because of the anisotropy of graphite,hybrid anode formed by graphite/Li metal has low transport kinetics and is easy to causes the growth of lithium dendrites and accumulation of dead Li,which seriously affects the cycle life of batteries and even causes safety problems.Here,by comparing graphite with two types of hard carbon,it was found that hybrid anode formed by hard carbon and lithium metal,possessing more disordered mesoporous structure and lithophilic groups,presents better performance.Results indicate that the mesoporous structure provides abundant active site and storage space for dead lithium.With the synergistic effect of this structure and lithophilic functional groups(–COOH),the reversibility of hard carbon/lithium metal hybrid anode is maintained,promoting uniform deposition of lithium metal and alleviating formation of lithium dendrites.The hybrid anode maintains a 99.5%Coulombic efficiency(CE)after 260 cycles at a specific capacity of 500 m Ah/g.This work provides new insights into the hybrid anodes formed by carbon-based materials and lithium metal with high specific energy and fast charging ability. 展开更多
关键词 Hard carbon/Li metal hybrid anode mesoporous structure Surface oxygen functional group Fast charging Lithium batteries
下载PDF
Bimetallic CoNi single atoms supported on three-dimensionally ordered mesoporous chromia:highly active catalysts for n-hexane combustion
7
作者 Xiuqing Hao Yuxi Liu +4 位作者 Jiguang Deng Lin Jing Jia Wang Wenbo Pei Hongxing Dai 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1122-1137,共16页
Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile... Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O. 展开更多
关键词 Three-dimensional ordered mesoporous chromium oxide Supported bimetallic single-atom catalyst Cobalt-nickel single atoms n-Hexane combustion Catalytic reaction mechanism
下载PDF
The Capture and Catalytic Conversion of CO_(2) by Dendritic Mesoporous Silica-Based Nanoparticles
8
作者 Yabin Wang Liangzhu Huang +2 位作者 Songwei Li Chuntai Liu Hua He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期126-151,共26页
Dendritic mesoporous silica nanoparticles own three-dimensional center-radial channels and hierarchical pores,which endows themselves with super-high specific surface area,extremely large pore volumes,especially acces... Dendritic mesoporous silica nanoparticles own three-dimensional center-radial channels and hierarchical pores,which endows themselves with super-high specific surface area,extremely large pore volumes,especially accessible internal spaces,and so forth.Dissimilar guest species(such as organic groups or metal nanoparticles)could be readily decorated onto the interfaces of the channels and pores,realizing the functionalization of dendritic mesoporous silica nanoparticles for targeted applications.As adsorbents and catalysts,dendritic mesoporous silica nanoparticles-based materials have experienced nonignorable development in CO_(2)capture and catalytic conversion.This comprehensive review provides a critical survey on this pregnant subject,summarizing the designed construction of novel dendritic mesoporous silica nanoparticles-based materials,the involved chemical reactions(such as CO_(2)methanation,dry reforming of CH_(4)),the value-added chemicals from CO_(2)(such as cyclic carbonates,2-oxazolidinones,quinazoline-2,4(1H,3H)-diones),and so on.The adsorptive and catalytic performances have been compared with traditional silica mesoporous materials(such as SBA-15 or MCM-41),and the corresponding reaction mechanisms have been thoroughly revealed.It is sincerely expected that the in-depth discussion could give materials scientists certain inspiration to design brand-new dendritic mesoporous silica nanoparticles-based materials with superior capabilities towards CO_(2)capture,utilization,and storage. 展开更多
关键词 catalytic conversion CO_(2)adsorption CO_(2)capture dendritic mesoporous silica nanoparticles
下载PDF
S-doped mesoporous graphene modified separator for high performance lithium-sulfur batteries
9
作者 Xinlong Ma Chenggen Xu +8 位作者 Yin Yang Dong Sun Kai Zhao Changbo Lu Peng Jin Yiting Chong Sirawit Pruksawan Zhihua Xiao Fuke Wang 《Materials Reports(Energy)》 EI 2024年第3期60-68,共9页
Due to their low cost,environmental friendliness and high energy density,the lithium-sulfur batteries(LSB)have been regarded as a promising alternative for the next generation of rechargeable battery systems.However,t... Due to their low cost,environmental friendliness and high energy density,the lithium-sulfur batteries(LSB)have been regarded as a promising alternative for the next generation of rechargeable battery systems.However,the practical application of LSB is seriously hampered by its short cycle life and high self-charge owing to the apparent shuttle effect of soluble lithium polysulfides.Using MgSO_(4)@MgO composite as both template and dopant,template-guided S-doped mesoporous graphene(SMG)is prepared via the fluidized-bed chemical vapor deposition method.As the polypropylene(PP)modifier,SMG with high specific surface area,abundant mesoporous structures and moderate S doping content offers a wealth of physical and chemical adsorptive sites and reduced interfacial contact resistance,thereby restraining the serious shuttle effects of lithium polysulfides.Consequently,the LSB configured with mesoporous graphene(MG)as S host material and SMG as a separator modifier exhibits an enhanced electrochemical performance with a high average capacity of 955.64 mA h g^(-1) at 1C and a small capacity decay rate of 0.109%per cycle.Additionally,the density functional theory(DFT)calculation models have been rationally constructed and demonstrated that the doped S atoms in SMG possess higher binding energy to lithium polysulfides than that in MG,indicating that the SMG/PP separator can effectively capture soluble lithium polysulfides via chemical binding forces.This work would provide valuable insight into developing a versatile carbon-based separator modifier for LSB. 展开更多
关键词 Fluidized-bed chemical vapor deposition mesoporous graphene S doping Separator modification Lithium-sulfur battery
下载PDF
Mesoporous Carbon Nanofibers Loaded with Ordered PtFe Alloy Nanoparticles for Electrocatalytic Nitrate Reduction to Ammonia
10
作者 XIE Meng LUO Wei QIU Pengpeng 《Journal of Donghua University(English Edition)》 CAS 2024年第4期365-376,共12页
Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we... Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template.When employed as electrocatalysts,O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_(3RR)compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs).Notably,the NH_(3)production performance was particularly outstanding,with a maximum NH_(3)yield of up to 959.6μmol/(h·cm~2).Furthermore,the Faraday efficiency(FE)was even 88.0%at-0.4 V vs.reversible hydrogen electrode(RHE).This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO_(3)RR. 展开更多
关键词 ordered PtFe alloy mesoporous carbon nanofiber(mCNF) nitrate reduction reaction(NO3RR) ammonia(NH3)production reaction
下载PDF
Template-free synthesis of core-shell Fe_(3)O_(4)@MoS_(2)@mesoporous TiO_(2) magnetic photocatalyst for wastewater treatment 被引量:4
11
作者 Jingshu Yuan Yao Zhang +3 位作者 Xiaoyan Zhang Liang Zhao Hanlin Shen Shengen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期177-191,共15页
TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficult... TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficulties in recycling,have severely hindered its practical application.Herein,we synthesized magnetically separable Fe_(3)O_(4)@MoS_(2)@mesoporous TiO_(2)(FMmT)photocatalysts via a simple,green,and template-free solvothermal method combined with ultrasonic hydrolysis.It is found that FMmT possesses a high specific surface area(55.09 m2·g−1),enhanced visible-light responsiveness(~521 nm),and remarkable photogenerated charge separation efficiency.In addition,the photocatalytic degradation efficiencies of FMmT for methylene blue(MB),rhodamine B(RhB),and tetracycline(TC)are 99.4%,98.5%,and 89.3%within 300 min,respectively.The corresponding degradation rates are 4.5,4.3,and 3.1 times higher than those of pure TiO_(2)separately.Owing to the high saturation magnetization(43.1 A·m^(2)·kg^(−1)),FMmT can achieve effective recycling with an applied magnetic field.The improved photocatalytic activity is closely related to the effective transport of photogenerated electrons by the active interlayer MoS_(2) and the electron–hole separation caused by the MoS_(2)@TiO_(2)heterojunction.Meanwhile,the excellent light-harvesting ability and abundant reactive sites of the mesoporous TiO_(2)shell further boost the photocatalytic efficiency of FMmT.This work provides a new approach and some experimental basis for the design and performance improvement of magnetic photocatalysts by innovatively incorporating MoS2 as the active interlayer and integrating it with a mesoporous shell. 展开更多
关键词 CORE-SHELL MoS2 mesoporous TiO2 photocatalytic degradation heterojunction magnetic recycling
下载PDF
An AuNPs/Mesoporous NiO/Nickel Foam Nanocomposite as a Miniaturized Electrode for Heavy Metal Detection in Groundwater 被引量:1
12
作者 Boyuan Xue Qian Yang +4 位作者 Kaidong Xia Zhihong Li George Y.Chen Dayi Zhang Xiaohong Zhou 《Engineering》 SCIE EI CAS CSCD 2023年第8期199-208,共10页
Heavy metals,notably Pb2+and Cu^(2+),are some of the most persistent contaminants found in groundwater.Frequent monitoring of these metals,which relies on efficient,sensitive,cost-effective,and reliable methods,is a n... Heavy metals,notably Pb2+and Cu^(2+),are some of the most persistent contaminants found in groundwater.Frequent monitoring of these metals,which relies on efficient,sensitive,cost-effective,and reliable methods,is a necessity.We present a nanocomposite-based miniaturized electrode for the concurrent measurement of Pb2+and Cu^(2+)by exploiting the electroanalytical technique of square wave voltammetry.We also propose a facile in situ hydrothermal calcination method to directly grow binder-free mesoporous Ni O on a three-dimensional nickel foam,which is then electrochemically seeded with gold nanoparticles(Au NPs).The meticulous design of a low-barrier Ohmic contact between mesoporous Ni O and Au NPs facilitates target-mediated nanochannel-confined electron transfer within mesoporous Ni O.As a result,the heavy metals Pb2+(0.020 mg.L^(-1)detection limit;2.0–16.0 mg.L^(-1)detection range)and Cu^(2+)(0.013 mg.L^(-1)detection limit;0.4–12.8 mg.L^(-1)detection range)can be detected simultaneously with high precision.Furthermore,other heavy metal ions and common interfering ions found in groundwater showed negligible impacts on the electrode’s performance,and the recovery rate of groundwater samples varied between 96.3%±2.1%and 109.4%±0.6%.The compactness,flexible shape,low power consumption,and ability to remotely operate our electrode pave the way for onsite detection of heavy metals in groundwater,thereby demonstrating the potential to revolutionize the field of environmental monitoring. 展开更多
关键词 AuNPs mesoporous NiO Miniaturized electrode Heavy metal ions GROUNDWATER Square wave voltammetry
下载PDF
Highly Efficient Heavy-Metal-Ion Removal from Shellfish Processing Liquid with Low Protein and Polysaccharide Loss by Hybrid Mesoporous Silica Diol-APDC-SBA15 被引量:1
13
作者 QI Yanxia SONG Yang +4 位作者 LIU Chang QI Shizhe WANG Haibo CAO Jijuan ZHAO Qiancheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第1期221-228,共8页
Heavy metal ions in shellfish products are harmful to human health,and their removal with low nutrient loss remains challenging.Herein,a new type of mesoporous silica(SBA15),modified internally with ammonium pyrrolidi... Heavy metal ions in shellfish products are harmful to human health,and their removal with low nutrient loss remains challenging.Herein,a new type of mesoporous silica(SBA15),modified internally with ammonium pyrrolidine dithiocarbamate(APDC)and externally with alkyl-diol groups,which was named as Diol-APDC-SBA15,was successfully developed and characterized by powder X-ray diffraction patterns,nitrogen adsorption,and Fourier transform infrared spectroscopy.The solutions with lead,chromium,cadmium,and copper were used to investigate the adsorption capacity of Diol-APDC-SBA15.Diol-APDC-SBA15 was adopted to remove heavy metals from cooking liquids of clams(Ruditapes philippinarum),hydrolysate liquids of oysters(Ostrea gigas Thunberg),and polysaccharide solution from the cooking liquid of R.philippinarum.The efficiencies of removing heavy metal ions and the loss rates of proteins and polysaccharides were examined.The results showed that the adsorption capacities of Diol-APDCSBA15 for Pb,Cr,Cd,and Cu in standard heavy-metal solutions were 161.4,166.1,29.6,and 60.2mgg^(−1),respectively.The removal efficiency of Diol-APDC-SBA15 for Pb in the three shellfish processing liquids ranged from 60.5%to 99.6%.The Cr removal efficiency was above 99.9%in the oyster hydrolysate liquid.Meanwhile,the percentages of polysaccharide loss were 5.5%and 3.7%in the cooking liquid of clam and polysaccharide solution,respectively,and the protein loss was 1.2%in the oyster hydrolysate liquid.Therefore,the Diol-APDC-SBA15 material exhibits a great potential application in the removal of heavy metals from shellfish processing liquids with low losses of proteins and polysaccharides. 展开更多
关键词 heavy-metal removal modified mesoporous silica shellfish processing liquid protein POLYSACCHARIDE
下载PDF
Electrochemical hydrogen evolution efficiently boosted by interfacial charge redistribution in Ru/MoSe_(2) embedded mesoporous hollow carbon spheres 被引量:1
14
作者 Yubin Kuang Wei Qiao +1 位作者 Fulin Yang Ligang Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期447-454,I0012,共9页
The strong metal-support interaction inducing combined effect plays a crucial role in the catalysis reaction. Herein, we revealed that the combined advantages of MoSe_(2), Ru, and hollow carbon spheres in the form of ... The strong metal-support interaction inducing combined effect plays a crucial role in the catalysis reaction. Herein, we revealed that the combined advantages of MoSe_(2), Ru, and hollow carbon spheres in the form of Ru nanoparticles(NPs) anchored on a two-dimensionally ordered MoSe_(2) nanosheet-embedded mesoporous hollow carbon spheres surface(Ru/MoSe_(2)@MHCS) for the largely boosted hydrogen evolution reaction(HER) performance. The combined advantages from the conductive support, oxyphilic MoSe_(2), and Ru active sites imparted a strong synergistic effect and charge redistribution in the Ru periphery which induced high catalytic activity, stability, and kinetics for HER. Specifically, the obtained Ru/MoSe_(2)@MHCS required a small overpotential of 25.5 and 38.4 mV to drive the kinetic current density of 10 mA cm^(-2)both in acid and alkaline media, respectively, which was comparable to that of the Pt/C catalyst. Experimental and theoretical results demonstrated that the charge transfer from MoSe_(2) to Ru NPs enriched the electronic density of Ru sites and thus facilitated hydrogen adsorption and water dissociation. The current work showed the significant interfacial engineering in Ru-based catalysts development and catalysis promotion effect understanding via the metal-support interaction. 展开更多
关键词 Hydrogen evolution reaction RUTHENIUM ELECTROCATALYST MoSe_(2) mesoporous hollow carbon spheres
下载PDF
Mesoporous poly(ionic liquid)s with dual active sites for highly efficient CO_(2)conversion 被引量:1
15
作者 Yawen Fu Yanan Xu +11 位作者 Zepeng Zeng Abdul-Rauf Ibrahim Jin Yang Shuliang Yang Yaqiang Xie Yanzhen Hong Yuzhong Su Hongtao Wang Yanliang Wang Li Peng Jun Li Wendy L.Queen 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期478-486,共9页
Atmospheric CO_(2)concentrations are soaring due to the continued use of fossil fuels in energy production,an anthropogenic activity that is playing a leading role in global warming.Thus,research aimed at the capture ... Atmospheric CO_(2)concentrations are soaring due to the continued use of fossil fuels in energy production,an anthropogenic activity that is playing a leading role in global warming.Thus,research aimed at the capture and conversion of CO_(2)into value-added products,such as cyclic carbonates,is booming.While CO_(2)is an abundant,cheap,non-toxic,and readily accessible Cl feedstock,its thermodynamic stability necessitates the development of highly efficient catalysts that are able to promote chemical reactions under mild conditions.In this work,a novel mesoporous poly(ionic liquid)with dual active sites was synthesized through a facile method that involves co-polymerization,post-synthetic metalation,and supercritical CO_(2)drying.Due to a high density of nucleophilic and electrophilic sites,the as-prepared poly(ionic liquid),denoted as P2D-4BrBQA-Zn,offers excellent performance in a CO_(2)cycloaddition reaction using epichlorohydrin as the substrate(98.9%conversion and 96.9%selectivity).Moreover the reaction is carried out under mild,solvent-free,and additive-free conditions.Notably,P2D-4BrBQA-Zn also efficiently promotes the conversion of various other epoxide substrates into cyclic carbonates.Overall,the catalyst is found to have excellent substrate compatibility,stability,and recyclability. 展开更多
关键词 mesoporous poly(ionic liquid) Nucleophile/electrophilic sites Carbon dioxide cycloaddition Heterogeneous catalysis Supercritical CO_(2)drying
下载PDF
Mesoporous titanium-aluminosilicate as an efficient catalyst for selective oxidation of cyclohexene at mild reaction conditions
16
作者 Jitendra Diwakar Selvamani Arumugam +2 位作者 Bhavna Saini Anup Prakash Tathod Nagabhatla Viswanadham 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期257-265,共9页
Mesoporous titanium containing alumino-silicate materials with various titanium/silicon(Ti/Si) ratio(AlSi-Ti(n);n = Ti/Si mole ratio) have been successfully synthesized by a novel single-step sodium(Na)-free method, f... Mesoporous titanium containing alumino-silicate materials with various titanium/silicon(Ti/Si) ratio(AlSi-Ti(n);n = Ti/Si mole ratio) have been successfully synthesized by a novel single-step sodium(Na)-free method, for the first time. The obtained characterization results of the prepared materials reveal that in-situ addition of Ti into AlSi shows ordered mesoporous structure along with uniformly dispersed Ti species in +4 and +3 oxidation states suitable for selective oxidation of allylic C—H bond. The prepared mesoporouse Ti-AlSi(n) samples exhibited excellent activity in the oxidation of cyclohexene with 100%conversion and 100% selectivity to ketone-alcohol(KA) oil(cyclohex-2-en-1-ol and 2-cyclohexen-1-one) at low temperature and reaction time(35℃ and 30 min reaction time). This study suggests that AlSi-Ti(0.05) material can be a promising catalyst for the selective oxidation of cyclohexene under mild reaction conditions. 展开更多
关键词 CYCLOHEXENE Allylic oxidation KA oil mesoporous AlSi Mild conditions
下载PDF
Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions
17
作者 Jing Huang Honghui Cai +3 位作者 Qian Zhao Yunpeng Zhou Haibo Liu Jing Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期108-117,共10页
A fluorescent active organic–inorganic hybrid material Py N-SBA-15 was synthesized by implementing pyrene derivatives into mesoporous SBA-15 silica.Py N-SBA-15 had detection and removal functionalities toward Al^(3+)... A fluorescent active organic–inorganic hybrid material Py N-SBA-15 was synthesized by implementing pyrene derivatives into mesoporous SBA-15 silica.Py N-SBA-15 had detection and removal functionalities toward Al^(3+),Cu^(2+),and Hg^(2+).On the one hand,Py N-SBA-15 was used as a fluorescence sensor and displayed high sensitivity toward Al^(3+),Cu^(2+),and Hg^(2+)cations (limit of detection:8.0×10^(-7),1.1×10^(-7),and 2.9×10^(-6)mol·L^(–1),respectively) among various analytes with“turn-off”response.On the other hand,the adsorption studies for these toxic analytes (Cu^(2+),Hg^(2+),and Al^(3+)) showed that the ion removal capacity could reach up to 45,581,and 85 mg·g^(-1),respectively.Moreover,the Langmuir isotherm models were better fitted with the adsorption data,indicating that the adsorption was mono-layer adsorption.Kinetic analysis revealed that the adsorption process was well described by the pseudo-second-order kinetic model for Cu^(2+)and Hg^(2+)and pseudo-first-order kinetic model for Al^(3+).The prepared silica material could be reused in four recycles without significantly decreasing its adsorption capacity.Therefore,the Py N-SBA-15 material can serve as a promising candidate for the simultaneous rapid detection and efficient adsorption of metal ions. 展开更多
关键词 Dual function Nanomaterials mesoporous silica Metal ions Detection and adsorption
下载PDF
Hydrothermally stable mesoporous aluminosilicates as superior FCC catalyst:From laboratory to refinery
18
作者 Hong-Tao Liu Jiu-Jiang Wang +7 位作者 Fang-Ming Xie Yun-Chuang Li Hai-Yan Li Hai-Yan Liu Yuan-Yuan Yue Xiao-Tong Mi xiong-Hou Gao Hong-Hai Liu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1903-1908,共6页
Well-ordered aluminosilicates(MAs)were prepared by in-situ assembly of pre-crystallized units of zeolite Y precursors at a commercial scale,and applied in an industrial fluid catalytic cracking unit for the first time... Well-ordered aluminosilicates(MAs)were prepared by in-situ assembly of pre-crystallized units of zeolite Y precursors at a commercial scale,and applied in an industrial fluid catalytic cracking unit for the first time.Compared with incumbent equilibrium catalyst,the surface area of trial equilibrium catalysts(30%inventory ratio)increased from 110 m^(2)g^(-1)to 120m^(2)g^(-1).Moreover,a significant increase of the mesoporous surfaceareaof trial equlibrium catalysts(30%inventoryrati)from 33 m g/to 40magi(22%increase).Furthermore,the equilibrium catalyst that contain 80%LPC-65 yields significantly lower heavy oil(0.23%)and higher total liquids(0.53%)compared with LDO-70.The industrial results demonstrated excellent hydrothermal stability and superior catalytic cracking properties,showing the promising futurein the industrial units. 展开更多
关键词 mesoporous aluminosilicates Heavy oil Fluid catalytic cracking Industrial application
下载PDF
Core-shell-embedded Mesoporous Silica Capsules for Atmospheric Water Harvesting
19
作者 ZHANG Shangsheng XU Shuman +5 位作者 LEI Ruicheng PAN Yuliang MA Tao ZHANG Zheng LIU Chunsheng ZHANG Zengzhi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期951-959,共9页
A one-step ultrasonic mechanical method was used to synthesize a kind of atmospheric water harvesting material with high water harvesting performance in a wide relative humidity(RH)range,especially at low RH(RH<40%... A one-step ultrasonic mechanical method was used to synthesize a kind of atmospheric water harvesting material with high water harvesting performance in a wide relative humidity(RH)range,especially at low RH(RH<40%),namely,mesoporous silica capsule(MSC)with core-shell structure.Transmission electron microscopy(TEM),nitrogen adsorption and other characterization techniques were used to study the formation process of nano-microspheres.A new mechanism of self-adaptive concentration gradient regulation of silicon migration and recombination core-shell structure was proposed to explain the formation of a cavity in the MSC system.The core-shell design can enhance the specific surface area and pore volume while maintaining the monodispersity and mesoporous size.To study the water harvesting performance of MSC,solid silica nanoparticles(SSN)and mesoporous silica nanoparticles(MSN)were prepared.In a small atmospheric water collection test(25℃,40%RH),the water vapour adsorption and desorption kinetics of MSC,SSN,MSN and a commercial silica gel(CSG)were compared and analyzed.The results show that the MSC with mesoporous channels and core-shell structure can provide about 0.324 gwater/gadsorbent,79%higher than the CSG(0.181 gwater/gadsorbent).It is 25.1%higher than that of 0.259 gwater/gadsorbentof un-hollowed MSN and 980%higher than that of0.03 gwater/gadsorbentof un-hollowed SSN.The material has a large specific surface area and pore volume,simple preparation method and low cost,which provides a feasible idea for realising atmospheric water collection in arid and semi-arid regions. 展开更多
关键词 mesoporous silica nanocapsules core-shell structure atmospheric water harvesting adsorption performance
下载PDF
Mesoporous silica nanoparticles with chiral pattern topological structure function as“antiskid tires”on the intestinal mucosa to facilitate oral drugs delivery
20
作者 Wei Xin Lin Wang +9 位作者 Jiahui Lin Yanbu Wang Qi pan Yang Han Zhiye Bao Shun Zong Ying Cheng Xuchun Chen Lin Zhao Heran Li 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第2期106-123,共18页
The weak adhesion between nanocarriers and the intestinal mucosa was one of the main reasons caused the failure in oral delivery.Inspired by the“antiskid tires”with complex chiral patterns,mesoporous silica nanopart... The weak adhesion between nanocarriers and the intestinal mucosa was one of the main reasons caused the failure in oral delivery.Inspired by the“antiskid tires”with complex chiral patterns,mesoporous silica nanoparticles AT-R@CMSN exhibiting geometrical chiral structure were designed to improve the surface/interface roughness in nanoscale,and employed as the hosting system for insoluble drugs nimesulide(NMS)and ibuprofen(IBU).Once performing the delivery tasks,AT-R@CMSN with rigid skeleton protected the loaded drug and reduced the irritation of drug on gastrointestinal tract(GIT),while their porous structure deprived drug crystal and improved drug release.More importantly,AT-R@CMSN functioned as“antiskid tire”to produce higher friction on intestinal mucosa and substantively influencedmultiple biological processes,including“contact”,“adhesion”,“retention”,“permeation”and“uptake”,compared to the achiral S@MSN,thereby improving the oral adsorption effectiveness of such drug delivery systems.By engineering AT-R@CMSN to overcome the stability,solubility and permeability bottlenecks of drugs,orally administered NMS or IBU loaded AT-R@CMSN could achieve higher relative bioavailability(705.95%and 444.42%,respectively)and stronger anti-inflammation effect.In addition,AT-R@CMSN displayed favorable biocompatibility and biodegradability.Undoubtedly,the present finding helped to understand the oral adsorption process of nanocarriers,and provided novel insights into the rational design of nanocarriers. 展开更多
关键词 Chiral mesoporous silica Bio-adhesion Oral delivery Intestinal mucosa Nanocarrier design
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部