期刊文献+
共找到391篇文章
< 1 2 20 >
每页显示 20 50 100
Understanding Simulated Causes of Damaging Surface Winds in a Derecho-Producing Mesoscale Convective System near the East China Coast Based on Convection-Permitting Simulations
1
作者 Liping LUO Ming XUE +3 位作者 Xin XU Lijuan LI Qiang ZHANG Ziqi FAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2112-2130,共19页
A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45... A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45 m s^(–1). A simulation using the Weather Research and Forecasting model with a 1.5-km grid spacing generally reproduces the development and subsequent organization of this convective system into an MCS, with an eastward protruding bow segment over the sea. In the simulation, an east-west-oriented high wind swath is generated behind the gust front of the MCS. Descending dry rear-to-front inflows behind the bow and trailing gust front are found to feed the downdrafts in the main precipitation regions. The inflows help to establish spreading cold outflows and enhance the downdrafts through evaporative cooling. Meanwhile, front-to-rear inflows from the south are present, associated with severely rearward-tilted updrafts initially forming over the gust front. Such inflows descend behind(north of) the gust front, significantly enhancing downdrafts and near-surface winds within the cold pool. Consistently, calculated trajectories show that these parcels that contribute to the derecho originate primarily from the region ahead(south) of the east-west-oriented gust front, and dry southwesterly flows in the low-to-middle levels contribute to strong downdrafts within the MCS. Moreover, momentum budget analyses reveal that a large westward-directed horizontal pressure gradient force within the simulated cold pool produced rapid flow acceleration towards Nantong. The analyses enrich the understanding of damaging wind characteristics over coastal East China and will prove helpful to operational forecasters. 展开更多
关键词 damaging surface winds convection-permitting simulations mesoscale convective system gust front cold pool
下载PDF
The Predictability Limit of Oceanic Mesoscale Eddy Tracks in the South China Sea
2
作者 Hailong LIU Pingxiang CHU +5 位作者 Yao MENG Mengrong DING Pengfei LIN Ruiqiang DING Pengfei WANG Weipeng ZHENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第9期1661-1679,共19页
Employing the nonlinear local Lyapunov exponent (NLLE) technique, this study assesses the quantitative predictability limit of oceanic mesoscale eddy (OME) tracks utilizing three eddy datasets for both annual and seas... Employing the nonlinear local Lyapunov exponent (NLLE) technique, this study assesses the quantitative predictability limit of oceanic mesoscale eddy (OME) tracks utilizing three eddy datasets for both annual and seasonal means. Our findings reveal a discernible predictability limit of approximately 39 days for cyclonic eddies (CEs) and 44 days for anticyclonic eddies (AEs) within the South China Sea (SCS). The predictability limit is related to the OME properties and seasons. The long-lived, large-amplitude, and large-radius OMEs tend to have a higher predictability limit. The predictability limit of AE (CE) tracks is highest in autumn (winter) with 52 (53) days and lowest in spring (summer) with 40 (30) days. The spatial distribution of the predictability limit of OME tracks also has seasonal variations, further finding that the area of higher predictability limits often overlaps with periodic OMEs. Additionally, the predictability limit of periodic OME tracks is about 49 days for both CEs and AEs, which is 5-10 days higher than the mean values. Usually, in the SCS, OMEs characterized by high predictability limit values exhibit more extended and smoother trajectories and often move along the northern slope of the SCS. 展开更多
关键词 PREDICTABILITY mesoscale eddy nonlinear local Lyapunov exponent South China Sea seasonal variability
下载PDF
Seasonal variation of mesoscale eddy intensity in the global ocean
3
作者 Yongcan Zu Yue Fang +3 位作者 Shuangwen Sun Libao Gao Yang Yang Guijun Guo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第1期48-58,共11页
Mesoscale eddies are a prominent oceanic phenomenon that plays an important role in oceanic mass transport and energy conversion.Characterizing by rotational speed,the eddy intensity is one of the most fundamental pro... Mesoscale eddies are a prominent oceanic phenomenon that plays an important role in oceanic mass transport and energy conversion.Characterizing by rotational speed,the eddy intensity is one of the most fundamental properties of an eddy.However,the seasonal spatiotemporal variation in eddy intensity has not been examined from a global ocean perspective.In this study,we unveil the seasonal spatiotemporal characteristics of eddy intensity in the global ocean by using the latest satellite-altimetry-derived eddy trajectory data set.The results suggest that the eddy intensity has a distinct seasonal variation,reaching a peak in spring while attaining a minimum in autumn in the Northern Hemisphere and the opposite in the Southern Hemisphere.The seasonal variation of eddy intensity is more intense in the tropical-subtropical transition zones within latitudinal bands between 15°and 30°in the western Pacific Ocean,the northwestern Atlantic Ocean,and the eastern Indian Ocean because baroclinic instability in these areas changes sharply.Further analysis found that the seasonal variation of baroclinic instability precedes the eddy intensity by a phase of 2–3 months due to the initial perturbations needing time to grow into mesoscale eddies. 展开更多
关键词 seasonal variation mesoscale eddy INTENSITY baroclinic instability global ocean
下载PDF
Quantitative analysis and prediction of the sound field convergence zone in mesoscale eddy environment based on data mining methods
4
作者 Ming Li Yuhang Liu +1 位作者 Yiyuan Sun Kefeng Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第5期110-120,共11页
The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and co... The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and convergence zone(CZ)characteristics.Based on the Gaussian vortex model,we construct various sound propagation scenarios under different eddy conditions,and carry out sound propagation experiments to obtain simulation samples.With a large number of samples,we first adopt the unified regression to set up analytic relationships between eddy conditions and CZ parameters.The sensitivity of eddy indicators to the CZ is quantitatively analyzed.Then,we adopt the machine learning(ML)algorithms to establish prediction models of CZ parameters by exploring the nonlinear relationships between multiple ME indicators and CZ parameters.Through the research,we can express the influence of ME on the CZ quantitatively,and achieve the rapid prediction of CZ parameters in ocean eddies.The prediction accuracy(R)of the CZ distance(mean R:0.9815)is obviously better than that of the CZ width(mean R:0.8728).Among the three ML algorithms,Gradient Boosting Decision Tree has the best prediction ability(root mean square error(RMSE):0.136),followed by Random Forest(RMSE:0.441)and Extreme Learning Machine(RMSE:0.518). 展开更多
关键词 convergence zone mesoscale eddy statistic analysis quantitative prediction machine learning
下载PDF
Spatiotemporal features and vertical structures of four types of mesoscale eddies in the Kuroshio Extension region
5
作者 Bowen Sun Shuchang Xu +2 位作者 Zhankun Wang Yujie Feng Baofu Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第5期30-40,共11页
Except for conventional mesoscale eddies,there are also abundant warm cyclonic eddies(WCEs)and cold anticyclonic eddies(CAEs)in the global ocean.Based on the global mesoscale eddy trajectory atlas product,satellite al... Except for conventional mesoscale eddies,there are also abundant warm cyclonic eddies(WCEs)and cold anticyclonic eddies(CAEs)in the global ocean.Based on the global mesoscale eddy trajectory atlas product,satellite altimetric and remote sensing datasets,and three-dimensional temperature/salinity dataset,spatiotemporal features of WCEs and CAEs are compared with traditional cold cyclonic eddies and warm anticyclonic eddies in the Kuroshio Extension(KE;28°−43°N,140°−170°E)region.Characteristics of abnormal eddies like radius,amplitude,eddy kinetic energy,and proportion in all eddies behave in significant asymmetry on the north and south sides of the KE jet.Unlike eddies in the general sense,temporal feature analysis reveals that it is more favorable to the formation and maintenance of WCEs and CAEs in summer and autumn,while winter is the opposite.The spatiotemporal variation of abnormal eddies is likely because the marine environment varying with time and space.Statistically,proportion of abnormal eddies increases rapidly in decaying stage during the whole eddy lifespan,resulting in smaller average radius,amplitude,sea surface temperature anomaly and sea surface height anomaly compared to normal ones.The three-dimensional composite structures for four types of eddies expose that the difference between abnormal and conventional eddies is not just limited to the sea surface,but also exists within the water below the sea surface.Vertical structures also indicate that the anomalous temperature signal is confined in the water from the sea surface to layers at about 30 m in the KE region. 展开更多
关键词 mesoscale ANOMALY KUROSHIO
下载PDF
Mesoscale and Microphysical Characteristics of a Double Rain Belt Event in South China on May 10–13,2022
6
作者 郭照华 谌芸 +1 位作者 肖天贵 曾智琳 《Journal of Tropical Meteorology》 SCIE 2024年第1期61-75,共15页
A second rain belt sometimes occurs ahead of a frontal rain belt in the warm sector over coastal South China,leading to heavy precipitation.We examined the differences in the mesoscale characteristics and microphysics... A second rain belt sometimes occurs ahead of a frontal rain belt in the warm sector over coastal South China,leading to heavy precipitation.We examined the differences in the mesoscale characteristics and microphysics of the frontal and warm sector rain belts that occurred in South China on May 10–13,2022.The southern rain belt occurred in an environment with favorable mesoscale conditions but weak large-scale forcing.In contrast,the northern rain belt was related to low-level horizontal shear and the surface-level front.The interaction between the enhanced southeasterly winds and the rainfall-induced cold pool promoted the persistent growth of convection along the southern rain belt.The convective cell propagated east over the coastal area,where there was a large temperature gradient.The bow-shaped echo in this region may be closely related to the rear-inflow jet.By contrast,the initial convection of the northern rain belt was triggered along the front and the region of low-level horizontal shear,with mesoscale interactions between the enhanced warm-moist southeasterly airflow and the cold dome associated with the earlier rain.The terrain blocked the movement of the cold pool,resulting in the stagnation of the frontal convective cell at an early stage.Subsequently,a meso-γ-scale vortex formed during the rapid movement of the convective cell,corresponding to an enhancement of precipitation.The representative raindrop spectra for the southern rain belt were characterized by a greater number and higher density of raindrops than the northern rain belt,even though both resulted in comparable hourly rainfalls.These results help us better understand the characteristics of double rain belts over South China. 展开更多
关键词 double rain belts in South China mesoscale rainstorm cyclonic shear line cold pool bow-shaped echo microphysical characteristics
下载PDF
Mesoscale study on explosion-induced formation and thermochemical response of PTFE/Al granular jet 被引量:2
7
作者 Yuan-feng Zheng Zhi-jian Zheng +2 位作者 Guan-cheng Lu Hai-fu Wang Huan-guo Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期112-125,共14页
The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simul... The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simulation,reaction kinetics and chemical energy release test.A two-dimensional granular model is developed with the randomly normal distribution of aluminum particle sizes and the particle delivery program.Then,the granular model is employed to study the shock-induced thermal behavior during the formation and extension processes of RLSCJ,as well as the temperature history curves of aluminum particles.The simulation results visualize the motion and temperature responses of the RLSCJ at the grain level,and further indicate that the aluminum particles are more likely to gather in the last two-thirds of the jet along its axis.Further analysis shows that the shock,collision,friction and deformation behaviors are all responsible for the steep temperature rise of the reactive jet.In addition,a shock-induced chemical reaction extent model of RLSCJ is built based on the combination of the Arrhenius model and the Avrami-Erofeev kinetic model,by which the chemical reaction growth behavior during the formation and extension stages is described quantitatively.The model indicates the reaction extent highly corresponds to the aluminum particle temperature history at the formation and extension stages.At last,a manometry chamber and the corresponding energy release model are used together to study the macroscopic chemical energy release characteristics of RLSCJ,by which the reaction extent model is verified. 展开更多
关键词 Reactive materials Shaped charge mesoscale simulation FORMATION Thermochemical response
下载PDF
Review on the mesoscale characterization of cement-stabilized macadam materials 被引量:1
8
作者 Qiao Dong Shiao Yan +3 位作者 Xueqin Chen Shi Dong Xiaokang Zhao Pawel Polaczyk 《Journal of Road Engineering》 2023年第1期71-86,共16页
The base layer constructed by cement-stabilized macadam(CSM)has been widely used in highway construction due to its low elasticity deformation and high carrying capacity.As a bearing layer,the CSM base is not exempt f... The base layer constructed by cement-stabilized macadam(CSM)has been widely used in highway construction due to its low elasticity deformation and high carrying capacity.As a bearing layer,the CSM base is not exempt from fatigue cracking under cyclic loading in the service process.Cracks in the base will create irreversible structural and functional deficiencies,such as the potential for reflective cracking of subsequently placed asphalt concrete overlays.The fracture of the base will shorten the service life of the pavement.The quality of the CSM base is directly related to the bearing capacity and integrity of the whole pavement structure.It is of practical significance to further study the fatigue failure behavior of CSM material for the long-term performance of the pavement.The CSM material is a typical heterogeneous multiphase composite.On the mesoscale,CSM consists of aggregate,cement mortar,pores,and the interface transitional zone(ITZ).On the microscale,the hardened mortar contains a large number of capillary pores,unhydrated particles,hydrated crystals,etc.,which makes the spatial distribution of its material properties stochastic.In addition,cement hydration,dry shrinkage,and temperature shrinkage can also produce micro-crack defects in cement mortar.These microcracks will have crossscale evolution under load,resulting in structural fracture.Macroscopic complex deformation and mechanical response are the reflections of its microscopic and even mesoscale composition and structure.This study summarized the existing studies on the mesoscopic properties of CSM materials,respectively from the three aspects of mesostructure,structural characterization,and mesoscale fatigue damage analysis,to help the development of long-life pavement.The future research direction is to explore the mesoscale characteristics of CSM using multiscale representation and analysis methods,to establish the connection between mesoscale characteristics and macroscopic mechanical properties. 展开更多
关键词 Road engineering Cement-stabilized macadam Fatigue cracking mesoscale simulation
下载PDF
The Initial Mesoscale Vortexes Leading to the Formation of Tropical Cyclones in the Western North Pacific
9
作者 Shenglan WU Juan FANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第5期804-823,共20页
A statistical analysis of the initial vortexes leading to tropical cyclone(TC)formation in the western North Pacific(WNP)is conducted with the ECMWF ERA5 reanalysis data from 1999 to 2018.It is found that TCs in the W... A statistical analysis of the initial vortexes leading to tropical cyclone(TC)formation in the western North Pacific(WNP)is conducted with the ECMWF ERA5 reanalysis data from 1999 to 2018.It is found that TCs in the WNP basically originate from three kinds of vortexes,i.e.,a mid-level vortex(MV),a low-level vortex(LV),and a relatively deep vortex with notable vorticity in both the lower and middle troposphere(DV).Among them,LV and DV account for 47.9%and 24.2%of tropical cyclogenesis events,respectively,while only 27.9%of TCs develop from the MV,which is much lower than that which occurs in the North Atlantic and eastern Pacific.Such a difference might be ascribed to the active monsoon systems in the WNP all year round.Due to the nearly upright structure of mid-level convergence in the early pre-genesis stage,TC genesis efficiency is the highest in DV.Compared with MV,LV generally takes a shorter time to intensify to a TC because of the higher humidity and the stronger low-level cyclonic circulation,which is related to air-sea interaction and boundary-layer convergence.Further examination of the relationship between tropical cyclogenesis and large-scale flow patterns indicate that the TC genesis events associated with LV are primarily related to the monsoon shear line,monsoon confluence region,and monsoon gyre,while those associated with MV are frequently connected with easterly waves and wave energy dispersion of preexisting TC.Compared with other flow patterns,tropical cyclones usually form and intensify faster in the monsoon confluence region. 展开更多
关键词 TC formation initial mesoscale vortexes TC genesis efficiency large-scale flow patterns
下载PDF
The Major Research Advances of Mesoscale Weather Dynamics in China Since 2003 被引量:1
10
作者 陆汉城 高守亭 +2 位作者 谈哲敏 周晓平 伍荣生 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第6期1049-1059,共11页
This paper reviews the main theoretical progress of mesoscale weather dynamics since 2003, including: (1) The dynamic mechanisms of balanced and unbalanced flow are applied to study the genesis and development prob... This paper reviews the main theoretical progress of mesoscale weather dynamics since 2003, including: (1) The dynamic mechanisms of balanced and unbalanced flow are applied to study the genesis and development problems of mesoscale circulation. The symmetric instability and transverse-wave instability are analyzed in line and vortex atmosphere convection, and further research has been done on nonlinear convective symmetric instability. The interaction between forced convection and unstable convection and the wave characteristics of mesoscale motion are also discussed. (2) Intermediate atmosphere dynamic boundary layer models are developed. The complicated nonlinear interaction is analyzed theoretically between the atmospheric boundary layer and the free atmosphere. The structure of the topography boundary layer, atmospheric frontogenesis, the structure and circulation of the low-level front and other boundary layer dynamic problems are discussed. (3) The formation and development of meso-β-scale rainstorms under the background of the East-Asia atmosphere circulation are diagnosed with the variation of MPV (moist potential vorticity) anomalies. And some physical vectors are modified and applied in the moist atmosphere. 展开更多
关键词 mesoscale dynamics mesoscale circulation mesoscale numerical simulation and diagnoses
下载PDF
Study on a Mesoscale Convective Vortex Causing Heavy Rainfall during the Mei-yu Season in 2003 被引量:20
11
作者 孙建华 赵思雄 +1 位作者 徐广阔 孟庆涛 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第5期1193-1209,共17页
The strong heavy rainfall on 3–5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the... The strong heavy rainfall on 3–5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the mei-yu season. Simulation results from the ARPS (Advanced Regional Prediction) data analysis system (ADAS) and WRF model were used to study the development of the mesoscale convective system (MCS) and mesoscale convective vortex (MCV). It is confirmed that the MCV formed during the development of a previous severe MCS. A closed vortex circulation can be found below 600 hPa with a vorticity maximum in the middle troposphere. The evolution process of the MCV can be divided into three stages: initiation, maturation, and dissipation. During the mature stage of the MCV, a downdraft occurred in the center of the MCV and new convection developed in southeast of the MCV. The convergence and the tilting in the lower troposphere convergence and vertical advection in the middle troposphere were the main vorticity sources in the MCV initiation stage. Finally, a conceptual model between the mei-yu front and the embedded MCS and MCV is proposed. The mei-yu front was the background condition for the development of the MCS and MCV. A low level jet (LLJ) transported moisture and the weak cold air invasion via a trough aloft in the middle troposphere and triggering the severe convection. Furthermore, the intensified jet was able to result in the initiation of new "secondary" areas of convection in the eastern part of the MCV. 展开更多
关键词 mesoscale convective system mesoscale convective vortex doppler radar WRF model
下载PDF
Modeling of ocean mesoscale eddy and its application in the underwater acoustic propagation 被引量:1
12
作者 李佳讯 张韧 +1 位作者 刘宸钊 范红军 《Marine Science Bulletin》 2012年第1期1-15,共15页
Aiming at the influence of ocean mesoscale eddy on underwater acoustic propagation, a theoretical computation model of ocean mesoscale eddy was established based on the in-situ hydrographic data in the sea area of oce... Aiming at the influence of ocean mesoscale eddy on underwater acoustic propagation, a theoretical computation model of ocean mesoscale eddy was established based on the in-situ hydrographic data in the sea area of ocean mesoscale eddy. An underwater acoustic modeI-MMPE was used to simulate the acoustic propagation under the influence of different types, different intensities and positions of eddies, and different frequencies and depths of sources. It is found that warm-core eddy can make the convergence zone "move back" and the width of it increases, while cold-core eddy can make the convergence zone "move forward" and the width of it decreases. The bigger the intensity of eddy, the more notable the "forward "or "back "effect. Sound source located depths and source frequencies can change the acoustic propagation characteristics in the eddy area. 展开更多
关键词 MMPE model mesoscale eddy model transmission loss
下载PDF
Three-dimensional properties of mesoscale cyclonic warm-core and anticyclonic cold-core eddies in the South China Sea 被引量:6
13
作者 Wenjin Sun Yu Liu +4 位作者 Gengxin Chen Wei Tan Xiayan Lin Yuping Guan Changming Dong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第10期17-29,共13页
In general,a mesoscale cyclonic(anticyclonic)eddy has a colder(warmer)core,and it is considered as a cold(warm)eddy.However,recently research found that there are a number of"abnormal"mesoscale cyclonic(anti... In general,a mesoscale cyclonic(anticyclonic)eddy has a colder(warmer)core,and it is considered as a cold(warm)eddy.However,recently research found that there are a number of"abnormal"mesoscale cyclonic(anticyclonic)eddies associated with warm(cold)cores in the South China Sea(SCS).These"abnormal"eddies pose a challenge to previous works on eddy detection,characteristic analysis,eddy-induced heat and salt transports,and even on mesoscale eddy dynamics.Based on a 9-year(2000–2008)numerical modelling data,the cyclonic warm-core eddies(CWEs)and anticyclonic cold-core eddies(ACEs)in the SCS are analyzed.This study found that the highest incidence area of the"abnormal"eddies is the northwest of Luzon Strait.In terms of the eddy snapshot counting method,8620 CWEs and 9879 ACEs are detected,accounting for 14.6%and 15.8%of the total eddy number,respectively.The size of the"abnormal"eddies is usually smaller than that of the"normal"eddies,with the radius only around 50 km.In the generation time aspect,they usually appear within the 0.1–0.3 interval in the normalized eddy lifespan.The survival time of CWEs(ACEs)occupies 16.3%(17.1%)of the total eddy lifespan.Based on two case studies,the intrusion of Kuroshio warm water is considered as a key mechanism for the generation of these"abnormal"eddies near the northeastern SCS. 展开更多
关键词 mesoscale eddy cyclonic warm-core eddy anticyclonic cold-core eddy Kuroshio intrusion South China Sea abnormal mesoscale eddy
下载PDF
Vorticity Budget Investigation of a Simulated Long-Lived Mesoscale Vortex in South China 被引量:8
14
作者 陈敏 郑永光 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第6期928-940,共13页
A vorticity budget investigation is performed using the output data from a numerical simulation of a typical MCV (mesoscale convectively generated votex) case in South China. Results suggest that the divergence caus... A vorticity budget investigation is performed using the output data from a numerical simulation of a typical MCV (mesoscale convectively generated votex) case in South China. Results suggest that the divergence caused by convection in the low troposphere is the main producer of positive vorticity, while vertical vorticity transferred by the tilting term from the horizontal vorticity compensates the upward output of cyclonic vorticity. Scale analyses of the vorticity equation suggest that the advection of planetary vorticity can be neglected owing to the low latitude, which is di?erent from the larger scale systems in high latitude areas. In addition, the distribution of relative vorticity tendency on pressure level is not uniform. A vortex will move along the vector from the negative to the positive vorticity tendency region. The mechanism of the phenomenon—that nearly all of the convectively ascending region is located southward/southeastward of the vortex center—is also discussed. Convergence with regard to latent heat release would be in favor of the spin-up of meso-vortex, however, the horizontal vorticity caused by wind shear is tilted by vertical motion due to convection. Consequently, the negative and positive vorticity tendencies are located symmetrically about the convective center, which suggests that the vortex southward movement is dynamically driven by convection. 展开更多
关键词 Vorticity Budget mesoscale convectively generated votex mesoscale convective system
下载PDF
A Review of Major Progresses in Mesoscale Dynamic Research in China since 1999 被引量:7
15
作者 周晓平 陆汉城 +1 位作者 倪允琪 谈哲敏 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第3期497-504,共8页
Mesoscale research conducted by Chinese meteorologists during the past four years is reviewed. Advances in theoretical studies include (a) mesoscale quasi-balanced and semi-balanced dynamics, derived through scale ana... Mesoscale research conducted by Chinese meteorologists during the past four years is reviewed. Advances in theoretical studies include (a) mesoscale quasi-balanced and semi-balanced dynamics, derived through scale analysis and the perturbation method which are suitable for describing mesoscale vortices; (b) subcritical instability and vortex-sheet instability; (c) frontal adjustment mechanism and the effect of topography on frontgenesis; and (d) slantwise vorticity development theories, the slantwise vortex equation, and moist potential vorticity (MPV) anomalies with precipitation-related heat and mass sinks and MPV impermeability theorem. Prom the MPV conservation viewpoint, the transformation mechanism between different scale weather systems is analyzed. Based on the data analysis, a new dew-point front near the periphery of the West Pacific subtropical high is identified. In the light of MPV theory and Q-vector theory, some events associated with torrential rain systems and severe storms are analyzed and diagnosed. Progress in mesoscale numerical simulation has been made in the development of meso-α, meso-β vortices, meso-γ-scale downbursts and precipitation produced by deep convective systems with MM5 and other mesoscale models. 展开更多
关键词 mesoscale dynamics mesoscale numerical simulations observational data diagnoses
下载PDF
A Study on the Dynamic Mechanism of the Formation of Mesoscale Vortex in Col Field 被引量:3
16
作者 姜勇强 王元 黄泓 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第6期1215-1226,共12页
The mesoscale vortex associated with a mesoscale low-level jet (mLLJ) usually causes heavy rainfall in the col field. The col field is defined as a region between two highs and two lows, with the isobaric surface si... The mesoscale vortex associated with a mesoscale low-level jet (mLLJ) usually causes heavy rainfall in the col field. The col field is defined as a region between two highs and two lows, with the isobaric surface similar to a col. Using a two-dimensional shallow water model, the meso-β scale vortex couplets (MβVCs) induced by eight types of mesoscale wind perturbations in an ideal col field were numerically simulated. With the sizes of -100 km, the MβVCs induced by northerly perturbation (NP) and southerly perturbation (SP) moved toward the col point. The sizes of MβVCs induced by southwesterly perturbation (SWP), southeasterly perturbation (SEP), northwesterly perturbation (NWP), and northeasterly perturbation (NEP) were relatively small for the perturbations moving toward dilatation axis. The MβVC induced by easterly perturbation (EP) and westerly perturbation (WP) could not develop because they quickly moved away from the col point, before the circulation could form. The size of the circulation was determined by the distance between the vortex and the col point. The closer to the col point the vortex was, the larger the size of vortex. The comparisons of maximum vorticity and vorticity root mean square error (RMSE) of the NP, the SWP, and the WP show that the maximum vorticity and the vorticity RMSE of the NP decreased slower than other perturbations. Therefore, the weak environment of the col field favors the maintenance of vorticity and the formation of vortex. When a mesoscale vortex forms near the col point or moves toward the col point, it may maintain a quasitationary state in the stable col field. 展开更多
关键词 col field mesoscale vortex mesoscale low-level jet point vorticity numerical simulation
下载PDF
Initiation and Evolution of Long-Lived Eastward-Propagating Mesoscale Convective Systems over the Second-Step Terrain along Yangtze-Huaihe River Valley 被引量:1
17
作者 Yuanchun ZHANG Jianhua SUN +1 位作者 Ruyi YANG Ruoyun MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第5期763-781,共19页
Based on the previous statistical analysis of mesoscale convective systems(MCSs)over the second-step terrain along Yangtze-Huaihe River Valley,eight representative long-lived eastward-propagating MCSs are selected for... Based on the previous statistical analysis of mesoscale convective systems(MCSs)over the second-step terrain along Yangtze-Huaihe River Valley,eight representative long-lived eastward-propagating MCSs are selected for model-based sensitivity testing to investigate the initiation and evolution of these types of MCSs as well as their impact on downstream areas.We subject each MCS to a semi-idealized(CNTL)simulation and a sensitivity(NOLH)simulation that neglects condensational heating in the formation region.The CNTL experiment reveals convection forms in the region downstream of a shortwave trough typified by persistent southwesterly winds in the low-to midtroposphere.Upon merging with other convective systems,moist convection develops into an MCS,which propagates eastward under the influence of mid-tropospheric westerlies,and moves out of the second-step terrain.The MCS then merges with pre-existing local convection over the plains;the merged convection reinforces the cyclonic wind perturbation into a mesoscale vortex at 850 hPa.While this vortex moves eastward to regions with local vortex at 850 hPa,another vortex at 925 hPa is also intensified.Finally,the vortices at 850 and 925 hPa merge together and develop into a mesoscale convective vortex(MCV).In contrast,MCSs fail to form and move eastward in the NOLH experiment.In the absence of eastward-propagating MCSs,moist convection and mesoscale vortices still appear in the plains,but the vortex strength and precipitation intensity are significantly weakened.It is suggested the eastward-propagating MCSs over the second-step terrain significantly impact the development and enhancement of moist convection and vortices in the downstream areas. 展开更多
关键词 mesoscale convective systems second-step terrain mesoscale convective vortex numerical sensitivity simulation
下载PDF
ANALYSIS OF MESOSCALE CONVECTIVE SYSTEMS ASSOCIATED WITH A WARM-SECTOR RAINSTORM EVENT OVER SOUTH CHINA 被引量:1
18
作者 张晓美 蒙伟光 +1 位作者 张艳霞 梁建茵 《Journal of Tropical Meteorology》 SCIE 2011年第1期1-10,共10页
With multiple meteorological data, including precipitation from automatic weather stations, integrated satellite-based precipitation (CMORPH), brightness temperature (TBB), radar echoes and NCEP reanalysis, a rainstor... With multiple meteorological data, including precipitation from automatic weather stations, integrated satellite-based precipitation (CMORPH), brightness temperature (TBB), radar echoes and NCEP reanalysis, a rainstorm event, which occurred on May 26, 2007 over South China, is analyzed with the focus on the evolution characteristics of associated mesoscale-β convective systems (Mβcss). Results are shown as follows. (1) The rainstorm presents itself as a typical warm-sector event, for it occurs within a surface inverted trough and on the left side of a southwesterly low-level jet (LLJ), which shows no obvious features of baroclinicity. (2) The heavy rainfall event is directly related to at least three bodies of Mβcss with peak precipitation corresponding well to their mature stages. (3) The Mβcss manifest a backward propagation, which is marked with a new form of downstream convection different from the more usual type of forward propagation over South China, i.e., new convective systems mainly form at the rear part of older Mβcss. (4) Rainstorm-causing Mβcss form near the convergence region on the left side of an 850-hPa southwesterly LLJ, over which there are dominantly divergent air flows at 200 hPa. Different from the typical flow pattern of outward divergence off the east side of South Asia High, which is usually found to be over zones of heavy rains during the annually first rainy season of South China, this warm-sector heavy rain is below the divergence region formed between the easterly and southerly flows west of the South Asian High that is moving out to sea. (5) The LLJ transports abundant amount of warm and moist air to the heavy rainfall area, providing advantageous conditions for highly unstable energy to generate and store at middle and high levels, where corresponding low-level warm advection may be playing a more direct role in the development of Mβcss. As a triggering mechanism for organized convective systems, the effect of low-level warm advection deserves more of our attention. Based on the analysis of surface mesoscale airflow in the article, possible triggering mechanisms for Mβcss are also discussed. 展开更多
关键词 mesoscale analysis warm-sector rainstorm South China rainstorm mesoscale β
下载PDF
Comparative Studies of Different Mesoscale Convection Parameterization Schemes in the Simulation of Mei-Yu Front Heavy Rain 被引量:2
19
作者 Ping Fan Luo Zhe-Xian 《Atmospheric and Oceanic Science Letters》 2010年第3期132-138,共7页
The mei-yu front heavy rainstorms occurred over Nanjing on 3 5 and 8 9 July 2003 and were simulated in this paper using the Weather Research and Forecasting Model (WRFv3.1) with various mesoscale convection parameteri... The mei-yu front heavy rainstorms occurred over Nanjing on 3 5 and 8 9 July 2003 and were simulated in this paper using the Weather Research and Forecasting Model (WRFv3.1) with various mesoscale convection parameterization schemes (MCPSs). The simulations show that the temporal and spatial evolution and distribution of rainstorms can be modeled; however, there was incongruity between the comparative simulations of four different MCPSs and the observed data. These disparities were exhibited in the simulations of both the 24-hour surface rainfall total and the hourly precipitation rate. Further analysis revealed that the discrepancies of vertical velocity and the convective vorticity vector (CVV) between the four simulations were attributed to the deviation of rainfall values. In addition, the simulations show that the mid-scale convection, particularly the mesoscale convection system (MCS) formation, can be well simulated with the proper mesoscale convection parameterization schemes and may be a crucial factor of the mei-yu front heavy rainstorm. These results suggest that, in an effort to enhance simulation and prediction of heavy rainfall and rainstorms, subsequent studies should focus on the development and improvement of MCPS. 展开更多
关键词 mesoscale convection parameterization schemes vertical velocity the convective vorticity vector the mesoscale convection system
下载PDF
Eddy diffusivity and coherent mesoscale eddy analysis in the Southern Ocean
20
作者 Wenjin Sun Jingsong Yang +4 位作者 Wei Tan Yu Liu Baojun Zhao Yijun He Changming Dong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第10期1-16,共16页
The spatial distribution of eddy diffusivity,basic characteristics of coherent mesoscale eddies and their relationship are analyzed from numerical model outputs in the Southern Ocean.Mesoscale fluctuation information ... The spatial distribution of eddy diffusivity,basic characteristics of coherent mesoscale eddies and their relationship are analyzed from numerical model outputs in the Southern Ocean.Mesoscale fluctuation information is obtained by a temporal-spatial filtering method,and the eddy diffusivity is calculated using a linear regression analysis between isoneutral thickness flux and large-scale isoneutral thickness gradient.The eddy diffusivity is on the order of O(103 m2/s)with a significant spatial variation,and it is larger in the area with strong coherent mesoscale eddy activity.The mesoscale eddies are mainly located in the upper ocean layer,with the average intensity no larger than 0.2.The mean radius of the coherent mesoscale cyclonic(anticyclonic)eddy gradually decays from(121.2±10.4)km((117.8±9.6)km)at 30°S to(43.9±5.3)km((44.7±4.9)km)at 65°S.Their vertical penetration depths(lifespans)are deeper(longer)between the northern side of the Subpolar Antarctic Front and 48°S.The normalized eddy diffusivity and coherent mesoscale eddy activity show a significant positive correlation,indicating that coherent mesoscale eddy plays an important role in eddy diffusivity. 展开更多
关键词 eddy diffusivity transient mesoscale eddy coherent mesoscale eddy eddy penetration depth Southern Ocean
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部