期刊文献+
共找到727篇文章
< 1 2 37 >
每页显示 20 50 100
Understanding Simulated Causes of Damaging Surface Winds in a Derecho-Producing Mesoscale Convective System near the East China Coast Based on Convection-Permitting Simulations
1
作者 Liping LUO Ming XUE +3 位作者 Xin XU Lijuan LI Qiang ZHANG Ziqi FAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2112-2130,共19页
A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45... A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45 m s^(–1). A simulation using the Weather Research and Forecasting model with a 1.5-km grid spacing generally reproduces the development and subsequent organization of this convective system into an MCS, with an eastward protruding bow segment over the sea. In the simulation, an east-west-oriented high wind swath is generated behind the gust front of the MCS. Descending dry rear-to-front inflows behind the bow and trailing gust front are found to feed the downdrafts in the main precipitation regions. The inflows help to establish spreading cold outflows and enhance the downdrafts through evaporative cooling. Meanwhile, front-to-rear inflows from the south are present, associated with severely rearward-tilted updrafts initially forming over the gust front. Such inflows descend behind(north of) the gust front, significantly enhancing downdrafts and near-surface winds within the cold pool. Consistently, calculated trajectories show that these parcels that contribute to the derecho originate primarily from the region ahead(south) of the east-west-oriented gust front, and dry southwesterly flows in the low-to-middle levels contribute to strong downdrafts within the MCS. Moreover, momentum budget analyses reveal that a large westward-directed horizontal pressure gradient force within the simulated cold pool produced rapid flow acceleration towards Nantong. The analyses enrich the understanding of damaging wind characteristics over coastal East China and will prove helpful to operational forecasters. 展开更多
关键词 damaging surface winds convection-permitting simulations mesoscale convective system gust front cold pool
下载PDF
Recognition of Organizational Morphology of Mesoscale Convective Systems Using Himawari-8 Observations
2
作者 SHOU Yi-xuan ZHANG Su-zhao LU Feng 《Journal of Tropical Meteorology》 SCIE 2024年第3期289-305,共17页
The onset,evolution,and propagation processes of convective cells can be reflected by the organizational morphology of mesoscale convective systems(MCSs),which are key factors in determining the potential for heavy pr... The onset,evolution,and propagation processes of convective cells can be reflected by the organizational morphology of mesoscale convective systems(MCSs),which are key factors in determining the potential for heavy precipitation.This paper proposed a method for objectively classifying and segmenting MCSs using geosynchronous satellite observations.Validation of the product relative to the classification in radar composite reflectivity imagery indicates that the algorithm offers skill for discriminating between convective and stratiform areas and matched 65%of convective area identifications in radar imagery with a false alarm rate of 39%and an accuracy of 94%.A quantitative evaluation of the similarity between the structures of 50 MCSs randomly obtained from satellite and radar observations shows that the similarity was as high as 60%.For further testing,the organizational modes of the MCS that caused the heavy precipitation in Northwest China on August 21,2016(hereinafter known as the“0821”rainstorm)were identified.It was found that the MCS,accompanied by the“0821”rainstorm,successively exhibited modes of the isolated cell,squall line with parallel stratiform(PS)rain,and non-linear system during its life cycle.Among them,the PS mode might have played a key role in causing this flooding.These findings are in line with previous studies. 展开更多
关键词 mesoscale convective system SATELLITE organizational morphology extremely heavy precipitation
下载PDF
EFFECTS OF CONDENSATION HEATING AND SURFACE FLUXES ON THE DEVELOPMENT OF A SOUTH CHINA MESOSCALE CONVECTIVE SYSTEM (MCS) 被引量:1
3
作者 蒙伟光 李江南 +3 位作者 王安宇 冯瑞权 古志明 闫敬华 《Journal of Tropical Meteorology》 SCIE 2005年第2期144-153,共10页
A sensitive numerical simulation study is carded out to investigate the effects of condensation heating and surface fluxes on the development of a South China MCS that occurred during 23 - 24 May 1998. The results rev... A sensitive numerical simulation study is carded out to investigate the effects of condensation heating and surface fluxes on the development of a South China MCS that occurred during 23 - 24 May 1998. The results reveal the following: (1) Condensation heating plays an important role in the development of MCS. In every different stage, without condensation heating, MCS precipitation is significantly reduced, and quickly dissipates. (2) Condensation heating demonstrates most importantly during the early development stages of MCS vortex; as the vortex develops stronger, the condensation heating effects reduces. (3) By affecting the MCS development processes, condensation heating also influences the formation of MCS mesoscale environment structure features such as low-level jet (mLLJ), upper-level divergence. (4) By changing the antecedent environmental circulation, the surface fluxes also play an important role in the development of MCS. Because of the surface heating, pressure declines over the heavy rainfall and MCS happening regions, which results in the intensification of southerly flows from the ocean along the South China coastline areas, and leads to the enhancement of horizontal convergence and increase of vapor amount in the lower layer. All of these make the atmosphere more unstable and more favorable for the convection. 展开更多
关键词 condensation heating surface fluxes mesoscale convective system mcs South China heavyrainfall numerical simulation
下载PDF
The Characteristics of Mesoscale Convective Systems (MCSs) over East Asia in Warm Seasons 被引量:5
4
作者 Li Jun Wang Bin Wang Dong-Hai 《Atmospheric and Oceanic Science Letters》 2012年第2期102-107,共6页
Mesoscale convective system (MCS) cloud clusters,defined using an objective recognition analysis based on hourly geostationary infrared satellite data over East Asia during the warm seasons of 1996-2008 (except 2004),... Mesoscale convective system (MCS) cloud clusters,defined using an objective recognition analysis based on hourly geostationary infrared satellite data over East Asia during the warm seasons of 1996-2008 (except 2004),were investigated in this study.The geographical pattern of MCS distribution over East Asia shows several high-frequency centers at low latitudes,including the Indo-China peninsula,the Bay of Bengal,the Andaman Sea,the Brahmaputra river delta,the south China coastal region,and the Philippine Islands.There are several middle-frequency centers in the middle latitudes,e.g.,the central-east of the Tibet Plateau,the Plateau of west Sichuan,Mount Wuyi,and the Sayan Mountains in Russia;whereas in Lake Baikal,the Tarim Basin,the Taklimakan Desert,the Sea of Japan,and the Sea of Okhotsk,rare MCS distributions are observed.MCSs are most intensely active in summer,with the highest monthly frequency in July,which is partly associated with the breaking out and prevailing of the summer monsoon in East Asia.An obvious diurnal cycle feature is also found in MCS activities,which shows that MCSs are triggered in the afternoon,mature in the evening,and dissipate at night.MCS patterns over East Asia can be characterized as small,short-lived,or elongated,which move slowly and usually lead to heavy rains or floods. 展开更多
关键词 mesoscale Convective system infrared satellite data DISTRIBUTION monthly variation diurnal cycle
下载PDF
Understanding the Split Characteristics of the Tropical Mesoscale Convective System (MCS) of April 9, 2018, in Northern Ghana Using Infrasound Data
5
作者 K. Benjamin Kouassi Fidele Yoroba +3 位作者 Uchenna Onwuhaka Madu Adama Diawara Kouakou Kouadio Paul Antoine Yao 《Atmospheric and Climate Sciences》 2021年第1期1-10,共10页
The split characteristics of the tropical Mesoscale Convective System (MCS) of April 9, 2018, in northern Ghana were studied using infrasound data measured by the mobile array (I68CI) which was deployed by C<span s... The split characteristics of the tropical Mesoscale Convective System (MCS) of April 9, 2018, in northern Ghana were studied using infrasound data measured by the mobile array (I68CI) which was deployed by C<span style="white-space:nowrap;">?</span>te d’Ivoire National Data Center (NDC) in collaboration with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). These infrasound measurements were made during a measurement campaign from January 1st, 2018 to December 31, 2018, in northeast Cote d’Ivoire, precisely in Comoe National Park. Graphic Progressive Multi-Channel Correlation (GPMCC) method based on a progressive study of the correlation functions was used to analyze and visualize data. The infrasound detection from this MCS shows clearly a division of the MCS structure into 2 distinct subsystems under the effect of internal and external constraints not well known but related to convection;a smaller subsystem in the north, associated with an area of intense rainfall of about 30 mm/hour and located at 9.5<span style="white-space:nowrap;">°</span>N - 2<span style="white-space:nowrap;">°</span>E with an azimuth of 70<span style="white-space:nowrap;">°</span> and, a large subsystem in the south, associated with a zone of high rainfall of about 96 mm/hour and located at 8.8<span style="white-space:nowrap;">°</span>N - 1.4<span style="white-space:nowrap;">°</span>E with an azimuth of 90<span style="white-space:nowrap;">°</span>. These two subsystems were located 200 km and 260 km from the I68CI station with frequencies of 2.3 Hz and 1 Hz respectively. The mesoscale convective systems in this region are moving from East to West and including several storm cells. 展开更多
关键词 INFRASOUND mesoscale Convective systems (mcs) Cote D’Ivoire Satellite Image
下载PDF
Locating Parent Lightning Strokes of Sprites Observed over a Mesoscale Convective System in Shandong Province,China 被引量:6
6
作者 Anjing HUANG Gaopeng LU +5 位作者 Hongbo ZHANG Feifan LIU Yanfeng FAN Baoyou ZHU Jing YANG Zhichao WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第11期1396-1414,共19页
In this paper, we report the location results for the parent lightning strokes of more than 30 red sprites observed over an asymmetric mesoscale convective system(MCS) on 30 July 2015 in Shandong Province, China, with... In this paper, we report the location results for the parent lightning strokes of more than 30 red sprites observed over an asymmetric mesoscale convective system(MCS) on 30 July 2015 in Shandong Province, China, with a long-baseline lightning location network of very-low-frequency/low-frequency magnetic field sensors. The results show that almost all of these cloud-to-ground(CG) strokes are produced during the mature stage of the MCS, and are predominantly located in the trailing stratiform region, which is similar to analyses of sprite-productive MCSs in North America and Europe. Comparison between the location results for the sprite-producing CG strokes and those provided by the World Wide Lightning Location Network(WWLLN) indicates that the location accuracy of WWLLN for intense CG strokes in Shandong Province is typically within 10 km, which is consistent with the result based on analysis of 2838 sprite-producing CG strokes in the continental United States. Also, we analyze two cases where some minor lightning discharges in the parent flash of sprites can also be located, providing an approach to confine the thundercloud region tapped by the sprite-producing CG strokes. 展开更多
关键词 red SPRITES positive cloud-to-ground strokes(+CGs) mesoscale CONVECTIVE system(mcs)
下载PDF
Evolution of the Total Lightning Activity in a Leading-Line and Trailing Stratiform Mesoscale Convective System over Beijing 被引量:19
7
作者 刘冬霞 郄秀书 +1 位作者 熊亚军 冯桂力 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第4期866-878,共13页
Data from the Beijing SAFIR 3000 lightning detection system and Doppler radar provided some insights into the three-dimensional lightning structure and evolution of a leading-line and trailing-stratiform (LLTS) meso... Data from the Beijing SAFIR 3000 lightning detection system and Doppler radar provided some insights into the three-dimensional lightning structure and evolution of a leading-line and trailing-stratiform (LLTS) mesoscale convective system (MCS) over Beijing on 31 July 2007. Most of the lightning in the LLTS-MCS was intracloud (IC) lightning, while the mean ratio of positive cloud-to-ground (+CG) lightning to –CG lightning was 1:4, which was higher than the average value from previous studies. The majority of CG lightning occurred in the convective region of the radar echo, particularly at the leading edge of the front. Little IC lightning and little +CG lightning occurred in the stratiform region. The distribution of the CG lightning indicated that the storm had a tilted dipole structure given the wind shear or the tripole charge structure. During the storm’s development, most of the IC lightning occurred at an altitude of ~9.5 km; the lightning rate reached its maximum at 10.5 km, the altitude of IC lightning in the mature stage of the storm. When the thunderstorm began to dissipate, the altitude of the IC lightning decreased gradually. The spatial distribution of lightning was well correlated with the rainfall on the ground, although the peak value of rainfall appeared 75 min later than the peak lightning rate. 展开更多
关键词 mesoscale convective system cloud to ground (CG) lightning intracloud (IC) lightning SAFIR 3000
下载PDF
Impact of 4DVAR Assimilation of Rainfall Data on the Simulation of Mesoscale Precipitation Systems in a Mei-yu Heavy Rainfall Event 被引量:10
8
作者 储可宽 谈哲敏 Ming XUE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第2期281-300,共20页
The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulate... The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales. Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance. 展开更多
关键词 4DVAR rainfall assimilation impact mesoscale convective system mei-yu heavy rainfall
下载PDF
A Numerical Case Study on a Mesoscale Convective System over the Qinghai-Xizang (Tibetan) Plateau 被引量:2
9
作者 朱国富 陈受钧 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第3期385-397,共13页
A mesoscale convective system (MCS) developing over the Qinghai-Xizang Plateau on 26 July 1995 is simulated using the fifth version of the Penn State-NCAR nonhydrostatic mesoscale model (MM5). The results obtained are... A mesoscale convective system (MCS) developing over the Qinghai-Xizang Plateau on 26 July 1995 is simulated using the fifth version of the Penn State-NCAR nonhydrostatic mesoscale model (MM5). The results obtained are inspiring and are as follows. (1) The model simulates well the largescale conditions in which the MCS concerned is embedded, which are the well-known anticyclonic Qinghai-Xizang Plateau High in the upper layers and the strong thermal forcing in the lower layers. In particular, the model captures the meso-&#945; scale cyclonic vortex associated with the MCS, which can be analyzed in the 500 hPa observational winds; and to some degree, the model reproduces even its meso-&#946; scale substructure similar to satellite images, reflected in the model-simulated 400 hPa rainwater. On the other hand, there are some distinct deficiencies in the simulation; for example, the simulated MCS occurs with a lag of 3 hours and a westward deviation of 3–5° longitude. (2) The structure and evolution of the meso-&#945; scale vortex associated with the MCS are undescribable for upper-air sounding data. The vortex is confined to the lower troposphere under 450 hPa over the plateau and shrinks its extent with height, with a diameter of 4° longitude at 500 hPa. It is within the updraft area, but with an upper-level anticyclone and downdraft over it. The vortex originates over the plateau, and does not form until the mature stage of the MCS. It lasts for 3–6 hours. In its processes of both formation and decay, the change in geopotential height field is prior to that in the wind field. It follows that the vortex is closely associated with the thermal effects over the plateau. (3) A series of sensitivity experiments are conducted to investigate the impact of various surface thermal forcings and other physical processes on the MCS over the plateau. The results indicate that under the background conditions of the upper-level Qinghai-Xizang High, the MCS involved is mainly dominated by the low-level thermal forcing. The simulation described here is a good indication that it may be possible to reproduce the MCS over the plateau under certain large-scale conditions and with the incorporation of proper thermal physics in the lower layers. 展开更多
关键词 Qinghai-Xizang (Tibetan) Plateau mesoscale convective system (mcs) numerical simulation
下载PDF
Analysis and Comparison of Mesoscale Convective Systems over the Qinghai-Xizang (Tibetan) Plateau 被引量:2
10
作者 朱国富 陈受钧 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第3期311-322,共12页
A series of mesoscale convective systems (MCSs) occurred daily over the Qinghai-Xizang Plateau during 25–28 July 1995. In this paper, their physical characteristics and evolutions based on infrared satellite imagery,... A series of mesoscale convective systems (MCSs) occurred daily over the Qinghai-Xizang Plateau during 25–28 July 1995. In this paper, their physical characteristics and evolutions based on infrared satellite imagery, their largescale meteorological conditions, and convective available potential energy (CAPE) are analyzed. It is found that similar diurnal evolution is present in all these MCSs. Their initial convective activities became active at noon LST by solar heating, and then built up rapidly. They formed and reached a peak in the early evening hours around 1800 LST and then abated gradually. Among them, the strongest and largest is the MCS on 26 July, which developed under the conditions of the great upper-level nearly-circular Qinghai-Xizang anticyclonic high and driven by the strong low-level thermal forcing and conditional instability. All these conditions are intimately linked with the thermal effects of the plateau itself. So its development was mainly associated with the relatively pure thermal effects peculiar to the Qinghai-Xizang Plateau. The next strongest one is the MCS on 28 July, which was affected notably by the baroclinic zone linked with the westerly trough. There are different features and development mechanisms between these two strongest MCSs. 展开更多
关键词 Qinghai-Xizang (Tibetan) Plateau mesoscale convective system (mcs) convective available potential energy (CAPE)
下载PDF
Simulation of Quasi-Linear Mesoscale Convective Systems in Northern China:Lightning Activities and Storm Structure 被引量:7
11
作者 Wanli LI Xiushu QIE +2 位作者 Shenming FU Debin SU Yonghai SHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第1期85-100,共16页
Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system ... Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system of the ARPS(Advanced Regional Prediction System) model.A new method in which the lightning density is calculated using both the precipitation and non-precipitation ice mass was developed to reveal the relationship between the lightning activities and QLMCS structures.Results indicate that,compared with calculating the results using two previous methods,the lightning density calculated using the new method presented in this study is in better accordance with observations.Based on the calculated lightning densities using the new method,it was found that most lightning activity was initiated on the right side and at the front of the QLMCSs,where the surface wind field converged intensely.The CAPE was much stronger ahead of the southeastward progressing QLMCS than to the back it,and their lightning events mainly occurred in regions with a large gradient of CAPE.Comparisons between lightning and non-lightning regions indicated that lightning regions featured more intense ascending motion than non-lightning regions;the vertical ranges of maximum reflectivity between lightning and non-lightning regions were very different;and the ice mixing ratio featured no significant differences between the lightning and non-lightning regions. 展开更多
关键词 quasi-linear mesoscale convective system Weather Research and Forecasting model Advanced Regional Prediction system model precipitation and non-precipitation ice
下载PDF
Analysis of a Mesoscale Convective System that Produced a Single Sprite 被引量:3
12
作者 Jing YANG Gaopeng LU +3 位作者 Ningyu LIU Haihua CU Yu WANG Morris COHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第2期258-271,共14页
Sprites are brief optical emissions occurring above thunderstorms. Features of sprites and their parent thunderstorms and lightning activities have been studied by many researchers. Here, we report a single sprite rec... Sprites are brief optical emissions occurring above thunderstorms. Features of sprites and their parent thunderstorms and lightning activities have been studied by many researchers. Here, we report a single sprite recorded over a mesoscale convective system during its life cycle in Northeast China. The results show that the sprite might have been a dancing one, with a 20 km horizontal displacement from its parent cloud-to-ground flash (CG) and a 38 ms time delay; all the sprite elements occurred during the continuing current process of the parent flash. The peak current of the parent CG was the largest during the almost one-hour time window containing the sprite, and the absolute values of all the negative flashes were smaller than 100 kA during the same time period and did not produce sprite. The sprite did not occur during the time period in which the maximum area of the thunderstorm reached. The occurrence of sprite corresponded well with the decay of the thunderstorm convection, and no significant relationship between the occurrence of sprite and the increase in the 30-35 dBZ and 35-40 dBZ interval was found. The large wind gradient in the 8-12 km region of the thunderstorm may have played an important role in the sprite production. 展开更多
关键词 SPRITE mesoscale convective system Doppler radar LIGHTNING magnetic field
下载PDF
THE FORMATION AND DEVELOPMENT OF A MESOSCALE CONVECTIVE SYSTEM WITH HEAVY RAINFALL ALONG SOUTH CHINA COASTAL AREA 被引量:6
13
作者 蒙伟光 张艳霞 +1 位作者 戴光丰 闫敬华 《Journal of Tropical Meteorology》 SCIE 2008年第1期57-60,共4页
Observational analysis shows that a Mesoscale Convective System (MCS) occurred on May 13-14 2004 along the coastal area in South China. The MCS initiated among the southwesterly flows within a west-east orientation lo... Observational analysis shows that a Mesoscale Convective System (MCS) occurred on May 13-14 2004 along the coastal area in South China. The MCS initiated among the southwesterly flows within a west-east orientation low-level shear line. Associated with the system, in its subsequent development stages, no distinct vortex circulation developed in low-level. Instead, a cyclonic flow disturbance was observed in the mid-troposphere. How the convection starts to develop and evolve into a MCS With observational analysis and numerical simulation, the problem has been studied. The high-resolution MM5 simulation shows that topographic convergence along the coastal line and the nearby mountains in western South China plays an important role to initiate the MCS convection. Once the convection occurs, due to the condensation heating, a cooperative interaction between the preexisting mid-level disturbance and convection is created, which may greatly affect the MCS development during periods when the system continues moving eastward. Compared to some typical MCS that happen in Southern China, which are usually accompanied with upward development of cyclonic vorticity, the development and evolution of the investigated MCS shows distinguishing features. In this article, the physical mechanisms responsible for the intensification of mid-level disturbance are discussed, and a viewpoint to interpret the effects of mid-level disturbance on the MCS organizational development is proposed. 展开更多
关键词 topographic convergence mid-level disturbance mesoscale convective system mcs numericalsimulation
下载PDF
Numerical Simulation of Torrential Rainfall and Vortical Hot Towers in a Midlatitude Mesoscale Convective System 被引量:2
14
作者 ZHANG Man Da-Lin ZHANG WANG Ang-Sheng 《Atmospheric and Oceanic Science Letters》 2009年第4期189-193,共5页
A cloud-resolving model simulation of a mesoscale convective system (MCS) producing torrential rainfall is performed with the finest horizontal resolution of 444 m. It is shown that the model reproduces the observed... A cloud-resolving model simulation of a mesoscale convective system (MCS) producing torrential rainfall is performed with the finest horizontal resolution of 444 m. It is shown that the model reproduces the observed MCS, including its rainfall distribution and amounts, as well as the timing and location of leading rainbands and trailing stratiform clouds. Results show that discrete convective hot towers, shown in Vis5D at a scale of 2-5 kin, are triggered by evaporatively driven cold outflows converging with the high-θe air ahead. Then, they move rearward, with respect to the leading rainbands, to form stratiform clouds. These convective towers generate vortical tubes of opposite signs, with more intense cyclonic vorticity occurring in the leading convergence zone. The results appear to have important implications for the improvement of summertime quantitative precipitation forecasts and the understanding of vortical hot towers, as well midlevel mesoscale convective vortices. 展开更多
关键词 torrential rainfall mei-yu front vortical hot towers mesoscale convective systems
下载PDF
SENSITIVITY OF MESOSCALE CONVECTIVE SYSTEMS AND ASSOCIATED HEAVY RAINFALL TO SOIL MOISTURE OVER SOUTH CHINA 被引量:1
15
作者 蒙伟光 张艳霞 +3 位作者 李江南 戴光丰 李昊睿 黄燕燕 《Journal of Tropical Meteorology》 SCIE 2017年第1期91-102,共12页
The impacts of soil moisture(SM) on heavy rainfall and the development of Mesoscale Convection Systems(MCSs) are investigated through 24-h numerical simulations of two heavy rainfall events that occurred respectively ... The impacts of soil moisture(SM) on heavy rainfall and the development of Mesoscale Convection Systems(MCSs) are investigated through 24-h numerical simulations of two heavy rainfall events that occurred respectively on28 March 2009(Case 1) and 6 May 2010(Case 2) over southern China. The numerical simulations were carried out with WRF and its coupled Noah LSM(Land Surface Model). First, comparative experiments were driven by two different SM data sources from NCEP-FNL and NASA-GLDAS. Secondary, with the run driven by NASA-GLDAS data as a control one, a series of sensitivity tests with different degree of(20%, 60%) increase or decrease in the initial SM were performed to examine the impact of SM on the simulations. Comparative experiment results show that the 24-h simulated cumulative rainfall distributions are not substantially affected by the application of the two different SM data,while the precipitation intensity is changed to some extent. Forecast skill scores show that simulation with NASA-GLDAS SM data can lead to some improvement, especially in the heavy rain(芏50 mm) forecast, where there is up to 5% increase in the TS score. Sensitivity test analysis found that a predominantly positive feedback of SM on precipitation existed in these two heavy rain events but not with completely the same features. Organization of the heavy rainfall-producing MCS seems to have an impact on the feedback process between SM and precipitation. For Case 1, the MCS was poorly organized and occurred locally in late afternoon, and the increase of SM only caused a slight enhancement of precipitation. Drier soil was found to result in an apparent decrease of rainfall intensity,indicating that precipitation is more sensitive to SM reduction. For Case 2, as the heavy rain was caused by a well-organized MCS with sustained precipitation, the rainfall is more sensitive to SM increase, which brings more rainfall. Additionally, distinctive feedback effects were identified from different stages and different organization of MCS, with strong feedback between SM and precipitation mainly appearing in the early stages of the poorly organized MCS and during the late period of the well-organized MCS. 展开更多
关键词 soil moisture Southern China heavy rainfall mesoscale convection system numerical simulation
下载PDF
Numerical Simulation of Microphysics in Meso-β-Scale Convective Cloud System Associated with a Mesoscale Convective Complex 被引量:2
16
作者 范蓓芬 叶家东 +1 位作者 William R.Cotton Gregory J.Tripoli 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1990年第2期154-170,共17页
Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model ... Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model with parameterized microphysics. It is found that the predicted meso-r-scale convective phenomena arc basically unsteady under the situation of strong shear at low-levels, while the meso-β-scale convective system is maintained up to 3 hours or more. The meso -β- scale cloud system exhibits characteristics of a multi-celled convective storm in which the meso-r-scale convective cells have lifetime of about 30 min. Pressure perturbation depicts a meso-low after a half hour in the low levels. As the cloud system evolves, the meso-low intensifies and extends to the upshear side and covers the entire domain in the mid-lower levels with the peak values of 5-8 hPa. Temperature perturbation depicts a warm region in the middle levels through the entire simulation period. The meso-r-scale warm cores with peak values of 4-8 ℃ are associated with strong convective cells. The cloud top evaporation causes a stronger cold layer around the cloud top levels.Simulation of microphysics exhibits that graupel is primarily concentrated in the strong convective cells forming the main source of convective rainfall after one hour of simulation time. Aggregates are mainly located in the stratiform region and decaying convective cells which produce the stratiform rainfall. Riming of the ice crystals is the predominant precipitation formation mechanism in the convection region, whereas aggregation of ice crystals is the predominant one in the stratiform region, which is consistent with observations. Sensitivity experiments of ice-phase mierophysical processes show that the microphysical structures of the convective cloud system can be simulated better with the diagnosed aggregation collection efficiencies. 展开更多
关键词 Numerical Simulation of Microphysics in Meso Scale Convective Cloud system Associated with a mesoscale Convective Complex Simulation
下载PDF
Initiation and Evolution of Long-Lived Eastward-Propagating Mesoscale Convective Systems over the Second-Step Terrain along Yangtze-Huaihe River Valley 被引量:1
17
作者 Yuanchun ZHANG Jianhua SUN +1 位作者 Ruyi YANG Ruoyun MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第5期763-781,共19页
Based on the previous statistical analysis of mesoscale convective systems(MCSs)over the second-step terrain along Yangtze-Huaihe River Valley,eight representative long-lived eastward-propagating MCSs are selected for... Based on the previous statistical analysis of mesoscale convective systems(MCSs)over the second-step terrain along Yangtze-Huaihe River Valley,eight representative long-lived eastward-propagating MCSs are selected for model-based sensitivity testing to investigate the initiation and evolution of these types of MCSs as well as their impact on downstream areas.We subject each MCS to a semi-idealized(CNTL)simulation and a sensitivity(NOLH)simulation that neglects condensational heating in the formation region.The CNTL experiment reveals convection forms in the region downstream of a shortwave trough typified by persistent southwesterly winds in the low-to midtroposphere.Upon merging with other convective systems,moist convection develops into an MCS,which propagates eastward under the influence of mid-tropospheric westerlies,and moves out of the second-step terrain.The MCS then merges with pre-existing local convection over the plains;the merged convection reinforces the cyclonic wind perturbation into a mesoscale vortex at 850 hPa.While this vortex moves eastward to regions with local vortex at 850 hPa,another vortex at 925 hPa is also intensified.Finally,the vortices at 850 and 925 hPa merge together and develop into a mesoscale convective vortex(MCV).In contrast,MCSs fail to form and move eastward in the NOLH experiment.In the absence of eastward-propagating MCSs,moist convection and mesoscale vortices still appear in the plains,but the vortex strength and precipitation intensity are significantly weakened.It is suggested the eastward-propagating MCSs over the second-step terrain significantly impact the development and enhancement of moist convection and vortices in the downstream areas. 展开更多
关键词 mesoscale convective systems second-step terrain mesoscale convective vortex numerical sensitivity simulation
下载PDF
Role of the interaction between a gust front and a mesoscale air mass boundary in convection initiation:a case study 被引量:2
18
作者 CUI Xinyan QIN Rui +1 位作者 CHEN Mingxuan HAN Lei 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第5期337-342,共6页
The local convection initiation(CI)mechanisms of a convective case that occurred on5 August 2017 in Cangzhou,northern China,were studied using Doppler radar and automatic weather station observational analysis,along w... The local convection initiation(CI)mechanisms of a convective case that occurred on5 August 2017 in Cangzhou,northern China,were studied using Doppler radar and automatic weather station observational analysis,along with Variational Doppler Radar Analysis System assimilation analysis.During the convective process,a gust front appeared ahead of two existing convective systems,respectively.In the warm and moist environment ahead of the gust fronts in the south,there was a mesoscale air mass boundary.With the process of a gust front moving southward,approaching the mesoscale air mass boundary,the convergence intensified in the area between the gust front and the mesoscale air mass boundary.Finally,the strong convergent updraft exceeded the level of free convection and triggered the new convection. 展开更多
关键词 convection initiation gust front mesoscale air mass boundary 4D variational data assimilation
下载PDF
Mesoscale Modeling Study of Severe Convection over Complex Terrain 被引量:2
19
作者 Ying ZHANG Zhiyong MENG +2 位作者 Peijun ZHU Tao SU Guoqing ZHAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第11期1259-1270,共12页
Short squall lines that occurred over Lishui, southwestern Zhejiang Province, China, on 5 July 2012, were investigated using the WRF model based on 1°× 1° gridded NCEP Final Operational Global Analysis ... Short squall lines that occurred over Lishui, southwestern Zhejiang Province, China, on 5 July 2012, were investigated using the WRF model based on 1°× 1° gridded NCEP Final Operational Global Analysis data. The results from the numerical simulations were particularly satisfactory in the simulated radar echo, which realistically reproduced the generation and development of the convective cells during the period of severe convection. The initiation of this severe convective case was mainly associated with the uplift effect of mesoscale mountains, topographic convergence, sufficient water vapor, and enhanced low-level southeasterly wind from the East China Sea. An obvious wind velocity gradient occurred between the Donggong Mountains and the southeast coastline, which easily enabled wind convergence on the windward slope of the Donggong Mountains; both strong mid–low-level southwesterly wind and low-level southeasterly wind enhanced vertical shear over the mountains to form instability; and a vertical coupling relation between the divergence on the upper-left side of the Donggong Mountains and the convergence on the lower-left side caused the convection to develop rapidly. The convergence centers of surface streams occurred over the mountain terrain and updrafts easily broke through the lifting condensation level(LCL) because of the strong wind convergence and topographic lift, which led to water vapor condensation above the LCL and the generation of the initial convective cloud. The centers of surface convergence continually created new convective cells that moved with the southwest wind and combined along the Donggong Mountains, eventually forming a short squall line that caused severe convective weather. 展开更多
关键词 convective convection divergence mesoscale mountains instability southwestern terrain moved uplift
下载PDF
Diagnosis of the Forcing of Inertial-gravity Waves in a Severe Convection System 被引量:2
20
作者 Lingkun RAN Changsheng CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第11期1271-1284,共14页
The non-hydrostatic wave equation set in Cartesian coordinates is rearranged to gain insight into wave generation in a mesoscale severe convection system. The wave equation is characterized by a wave operator on the l... The non-hydrostatic wave equation set in Cartesian coordinates is rearranged to gain insight into wave generation in a mesoscale severe convection system. The wave equation is characterized by a wave operator on the lhs, and forcing involving three terms—linear and nonlinear terms, and diabatic heating—on the rhs. The equation was applied to a case of severe convection that occurred in East China. The calculation with simulation data showed that the diabatic forcing and linear and nonlinear forcing presented large magnitude at different altitudes in the severe convection region. Further analysis revealed the diabatic forcing due to condensational latent heating had an important influence on the generation of gravity waves in the middle and lower levels. The linear forcing resulting from the Laplacian of potential-temperature linear forcing was dominant in the middle and upper levels. The nonlinear forcing was determined by the Laplacian of potential-temperature nonlinear forcing. Therefore, the forcing of gravity waves was closely associated with the thermodynamic processes in the severe convection case. The reason may be that, besides the vertical component of pressure gradient force, the vertical oscillation of atmospheric particles was dominated by the buoyancy for inertial gravity waves. The latent heating and potential-temperature linear and nonlinear forcing played an important role in the buoyancy tendency. Consequently, these thermodynamic elements influenced the evolution of inertial-gravity waves. 展开更多
关键词 gravity convection forcing mesoscale vorticity perturbation latent Laplacian divergence heating
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部