A series of mesoscale convective systems (MCSs) occurred daily over the Qinghai-Xizang Plateau during 25–28 July 1995. In this paper, their physical characteristics and evolutions based on infrared satellite imagery,...A series of mesoscale convective systems (MCSs) occurred daily over the Qinghai-Xizang Plateau during 25–28 July 1995. In this paper, their physical characteristics and evolutions based on infrared satellite imagery, their largescale meteorological conditions, and convective available potential energy (CAPE) are analyzed. It is found that similar diurnal evolution is present in all these MCSs. Their initial convective activities became active at noon LST by solar heating, and then built up rapidly. They formed and reached a peak in the early evening hours around 1800 LST and then abated gradually. Among them, the strongest and largest is the MCS on 26 July, which developed under the conditions of the great upper-level nearly-circular Qinghai-Xizang anticyclonic high and driven by the strong low-level thermal forcing and conditional instability. All these conditions are intimately linked with the thermal effects of the plateau itself. So its development was mainly associated with the relatively pure thermal effects peculiar to the Qinghai-Xizang Plateau. The next strongest one is the MCS on 28 July, which was affected notably by the baroclinic zone linked with the westerly trough. There are different features and development mechanisms between these two strongest MCSs.展开更多
基金the Chinese National Climbing Project"The Tibetan Plateau Meteorological Experiment"and in part by the Naltional Natural Science Foundation of China under Grant No.49675296.
文摘A series of mesoscale convective systems (MCSs) occurred daily over the Qinghai-Xizang Plateau during 25–28 July 1995. In this paper, their physical characteristics and evolutions based on infrared satellite imagery, their largescale meteorological conditions, and convective available potential energy (CAPE) are analyzed. It is found that similar diurnal evolution is present in all these MCSs. Their initial convective activities became active at noon LST by solar heating, and then built up rapidly. They formed and reached a peak in the early evening hours around 1800 LST and then abated gradually. Among them, the strongest and largest is the MCS on 26 July, which developed under the conditions of the great upper-level nearly-circular Qinghai-Xizang anticyclonic high and driven by the strong low-level thermal forcing and conditional instability. All these conditions are intimately linked with the thermal effects of the plateau itself. So its development was mainly associated with the relatively pure thermal effects peculiar to the Qinghai-Xizang Plateau. The next strongest one is the MCS on 28 July, which was affected notably by the baroclinic zone linked with the westerly trough. There are different features and development mechanisms between these two strongest MCSs.