The conventional and intensive observational data of the China Heavy Rain Experiment and Study (CHeRES) are used to specially analyze the heavy rainfall process in the mei-yu front that occurred during 20-21 June 2002...The conventional and intensive observational data of the China Heavy Rain Experiment and Study (CHeRES) are used to specially analyze the heavy rainfall process in the mei-yu front that occurred during 20-21 June 2002, focusing on the meso-β system. A mesoscale convective system (MCS) formed in the warm-moist southwesterly to the south of the shear line over the Dabie Mountains and over the gorge between the Dabie and Jiuhua Mountains. The mei-yu front and shear line provide a favorable synoptic condition for the development of convection. The GPS observation indicates that the precipitable water increased obviously about 2-3 h earlier than the occurrence of rainfall and decreased after that. The abundant moisture transportation by southwesterly wind was favorable to the maintenance of convective instability and the accumulation of convective available potential energy (CAPE). Radar detection reveals that meso-β and -γ systems were very active in the MaCS. Several convection lines developed during the evolution of the MaCS, and these are associated with surface convergence lines. The boundary outflow of the convection line may have triggered another convection line. The convection line moved with the mesoscale surface convergence line, but the convective cells embedded in the convergence line propagated along the line. On the basis of the analyses of the intensive observation data, a multi-scale conceptual model of heavy rainfall in the mei-yu front for this particular case is proposed.展开更多
This study investigated the formation and development of a mesoscale convergence line (MCL) within the circulation of Typhoon Rananim (0414), which eventually led to torrential rainfall over inland China. The stud...This study investigated the formation and development of a mesoscale convergence line (MCL) within the circulation of Typhoon Rananim (0414), which eventually led to torrential rainfall over inland China. The study is based on satellite, surface and sounding data, and 20 km×20 km regional spectral model data released by the Japan Meteorological Agency. It is found that midlatitude cold air intruded into the typhoon circulation, which resulted in the formation of the MCL in the northwestern quadrant of the typhoon. The MCL occurred in the lower troposphere below 700 hPa, with an ascending airflow inclined to cold air, and a secondary vertical circulation across the MCL. Meso-/~ scale convective cloud clusters emerged and developed near the MCL before their merging into the typhoon remnant clouds. Convective instability and conditional symmetric instability appeared simultaneously near Diagnosis of the interaction between the MCL and kinetic energy and positive vorticity for its further the MCL, favorable for the development of convection. the typhoon remnant implies that the MCL obtained development from the typhoon remnant in the lower troposphere. In turn, the development of the MCL provided kinetic energy and positive vorticity at upper levels for the typhoon remnant, which may have slowed clown the decaying of the typhoon.展开更多
As a follow-up of a previously published article on the synoptic background of the development of the severe convective weather that happened in Chongqing on 6 May 2010, this study further examines the initiation of t...As a follow-up of a previously published article on the synoptic background of the development of the severe convective weather that happened in Chongqing on 6 May 2010, this study further examines the initiation of the severe convective weather via a better high-resolution simulation with the Weather Research and Forecasting (WRF) model. It is found that the cold front approaching Chongqing from the northwest played a critical role in the initiation of the severe convective weather. As the cold front approached Chongqing, the low-to-mid level updrafts ahead of the front acted to increase the atmospheric lapse rate via the stretching effect, which in combination with the low-level diabatic heating induced by the sensible heat fluxes and infrared radiation emitted from the ground surface led to the continuous decrease of the low-level static stability and the increase of the convective available potential energy (CAPE) in Chongqing area. This provided necessary unstable energy for the development of deep moist convection. Furthermore, along with the reaching of a nearly east-west-oriented mesoscale convergence line from the southeast of Chongqing, the outflow right above the cold front began to interact with that above the mesoscale convergence line and induced distinct convergence at the altitude of approximately 1-2 km in the triangular area sandwiched by the cold front and the mesoscale convergence line. It is found that the updrafts associated with this convergence provided lifting necessary for the initiation of the severe convection. The sensitivity experiment without the terrain west of Chongqing indicates that the local topography did not play an important role in the initiation of this severe convective weather.展开更多
基金This project was supported by the National Key Basic Research and Development Project 2004CB418301the National Natural Science Foundation of China under Grant No.40405008.
文摘The conventional and intensive observational data of the China Heavy Rain Experiment and Study (CHeRES) are used to specially analyze the heavy rainfall process in the mei-yu front that occurred during 20-21 June 2002, focusing on the meso-β system. A mesoscale convective system (MCS) formed in the warm-moist southwesterly to the south of the shear line over the Dabie Mountains and over the gorge between the Dabie and Jiuhua Mountains. The mei-yu front and shear line provide a favorable synoptic condition for the development of convection. The GPS observation indicates that the precipitable water increased obviously about 2-3 h earlier than the occurrence of rainfall and decreased after that. The abundant moisture transportation by southwesterly wind was favorable to the maintenance of convective instability and the accumulation of convective available potential energy (CAPE). Radar detection reveals that meso-β and -γ systems were very active in the MaCS. Several convection lines developed during the evolution of the MaCS, and these are associated with surface convergence lines. The boundary outflow of the convection line may have triggered another convection line. The convection line moved with the mesoscale surface convergence line, but the convective cells embedded in the convergence line propagated along the line. On the basis of the analyses of the intensive observation data, a multi-scale conceptual model of heavy rainfall in the mei-yu front for this particular case is proposed.
基金the National"973"Program of China under Grant No.2009CB421504the National Natural Science Foundation of China under Grant Nos.40730948,40675033,and 40975032the Key Project of the Chinese Academy of Meteorological Sciences under Grant No.2008LASWZI01.
文摘This study investigated the formation and development of a mesoscale convergence line (MCL) within the circulation of Typhoon Rananim (0414), which eventually led to torrential rainfall over inland China. The study is based on satellite, surface and sounding data, and 20 km×20 km regional spectral model data released by the Japan Meteorological Agency. It is found that midlatitude cold air intruded into the typhoon circulation, which resulted in the formation of the MCL in the northwestern quadrant of the typhoon. The MCL occurred in the lower troposphere below 700 hPa, with an ascending airflow inclined to cold air, and a secondary vertical circulation across the MCL. Meso-/~ scale convective cloud clusters emerged and developed near the MCL before their merging into the typhoon remnant clouds. Convective instability and conditional symmetric instability appeared simultaneously near Diagnosis of the interaction between the MCL and kinetic energy and positive vorticity for its further the MCL, favorable for the development of convection. the typhoon remnant implies that the MCL obtained development from the typhoon remnant in the lower troposphere. In turn, the development of the MCL provided kinetic energy and positive vorticity at upper levels for the typhoon remnant, which may have slowed clown the decaying of the typhoon.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2012CB417201)China Meteorological Administration Special Public Welfare Research Fund(GYHY200706033)National Natural Science Foundation of China(40921160382)
文摘As a follow-up of a previously published article on the synoptic background of the development of the severe convective weather that happened in Chongqing on 6 May 2010, this study further examines the initiation of the severe convective weather via a better high-resolution simulation with the Weather Research and Forecasting (WRF) model. It is found that the cold front approaching Chongqing from the northwest played a critical role in the initiation of the severe convective weather. As the cold front approached Chongqing, the low-to-mid level updrafts ahead of the front acted to increase the atmospheric lapse rate via the stretching effect, which in combination with the low-level diabatic heating induced by the sensible heat fluxes and infrared radiation emitted from the ground surface led to the continuous decrease of the low-level static stability and the increase of the convective available potential energy (CAPE) in Chongqing area. This provided necessary unstable energy for the development of deep moist convection. Furthermore, along with the reaching of a nearly east-west-oriented mesoscale convergence line from the southeast of Chongqing, the outflow right above the cold front began to interact with that above the mesoscale convergence line and induced distinct convergence at the altitude of approximately 1-2 km in the triangular area sandwiched by the cold front and the mesoscale convergence line. It is found that the updrafts associated with this convergence provided lifting necessary for the initiation of the severe convection. The sensitivity experiment without the terrain west of Chongqing indicates that the local topography did not play an important role in the initiation of this severe convective weather.