期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Faster AMEDA-A Hybrid Mesoscale Eddy Detection Algorithm
1
作者 Xinchang Zhang Xiaokang Pan +3 位作者 Rongjie Zhu Runda Guan Zhongfeng Qiu Biao Song 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1827-1846,共20页
Identification of ocean eddies from a large amount of ocean data provided by satellite measurements and numerical simulations is crucial,while the academia has invented many traditional physical methods with accurate ... Identification of ocean eddies from a large amount of ocean data provided by satellite measurements and numerical simulations is crucial,while the academia has invented many traditional physical methods with accurate detection capability,but their detection computational efficiency is low.In recent years,with the increasing application of deep learning in ocean feature detection,many deep learning-based eddy detection models have been developed for more effective eddy detection from ocean data.But it is difficult for them to precisely fit some physical features implicit in traditional methods,leading to inaccurate identification of ocean eddies.In this study,to address the low efficiency of traditional physical methods and the low detection accuracy of deep learning models,we propose a solution that combines the target detection model Faster Region with CNN feature(Faster R-CNN)with the traditional dynamic algorithm Angular Momentum Eddy Detection and Tracking Algorithm(AMEDA).We use Faster R-CNN to detect and generate bounding boxes for eddies,allowing AMEDA to detect the eddy center within these bounding boxes,thus reducing the complexity of center detection.To demonstrate the detection efficiency and accuracy of this model,this paper compares the experimental results with AMEDA and the deep learning-based eddy detection method eddyNet.The results show that the eddy detection results of this paper are more accurate than eddyNet and have higher execution efficiency than AMEDA. 展开更多
关键词 mesoscale eddy detection object detection contour detection remote sensing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部