The mesoscopic simulation technique was applied to describe the phase separation behavior ofpolyimide blends and used for design of immiscible polyimide/BN blend films with enhanced thermal conductivity. The simulatio...The mesoscopic simulation technique was applied to describe the phase separation behavior ofpolyimide blends and used for design of immiscible polyimide/BN blend films with enhanced thermal conductivity. The simulation equilibrium morphologies of different poly(amic acid) (PAA) blend systems were investigated and compared with optical images of corresponding polyimide blend films obtained by experiment. The immiscible polyimide blend fihns containing nano-/micro-sized BN with vertical double percolation structure were prepared. The result indicated that the thermal conductivity of polyimide blend film with 25 wt% nano-sized BN reached 1,16 W/(m·K), which was 236% increment compared with that of the homogenous film containing the same BN ratio. The significant enhancement in thermal conductivity was attributed to the good phase separation of polyimide matrix, which made the inorganic fillers selectively localized in one continuous phase with high packing density, consequently, forming the effective thermal conductive pathway.展开更多
The aggregates in sodium dedecylsulphate (SDS)/dimethylbenzene/water systems have been investigated using dissipative particles dynamic (DPD) simulation method. Through analyzing three dimensional structures of aggre...The aggregates in sodium dedecylsulphate (SDS)/dimethylbenzene/water systems have been investigated using dissipative particles dynamic (DPD) simulation method. Through analyzing three dimensional structures of aggregates, three simulated results are found. One is the phase separation, which is clearly observed by water density and the aggregates in the simulated cell; another is the water morphology in reverse micelle, which can be found through the isodensity slice of water including bound water, trapped water and bulky water; the third is about the water/oil interface, i.e., ionic surfactant molecules, SDS, prefer to exist in the interface between water and oil phase at the low concentration.展开更多
Chemical flooding is one of the effective technologies to increase oil recovery of petroleum reservoirs after water flooding.Above the scale of representative elementary volume(REV), phenomenological modeling and nume...Chemical flooding is one of the effective technologies to increase oil recovery of petroleum reservoirs after water flooding.Above the scale of representative elementary volume(REV), phenomenological modeling and numerical simulations of chemical flooding have been reported in literatures,but the studies alike are rarely conducted at the pore-scale,at which the effects of physicochemical hydrodynamics are hardly resolved either by experimental observations or by traditional continuum-based simulations.In this paper,dissipative particle dynamics(DPD),one of mesoscopic fluid particle methods,is introduced to simulate the pore-scale flow in chemical flooding processes.The theoretical background,mathematical formulation and numerical approach of DPD are presented.The plane Poiseuille flow is used to illustrate the accuracy of the DPD simulation,and then the processes of polymer flooding through an oil-wet throat and a water-wet throat are studies, respectively.The selected parameters of those simulations are given in details.These preliminary results show the potential of this novel method for modeling the physicochemical hydrodynamics at the pore scale in the area of chemical enhanced oil recovery.展开更多
The compatibility of the blend systems for olyactic acid (PLA)/tributyl citrate (TBC) and PLA/glycerol has been studied by molecule and mesoscopic dynamics methods. The results from glass transition temperature si...The compatibility of the blend systems for olyactic acid (PLA)/tributyl citrate (TBC) and PLA/glycerol has been studied by molecule and mesoscopic dynamics methods. The results from glass transition temperature simulations showed that the compatibility of PLA/TBC system was better than that of PLA/glycerol, which were consistent with the conclusion obtained from the pair correlation functions. Besides, the behaviors of phase state distribution and evolution process were investigated by mesoscopic dynamics method as well. The results indicated that citrate ester was a better plasticizer than glycerol for PLA.展开更多
This study presents the interaction between konjac glucanmannan(KGM) and cationic surfactant dodecyl trimethylammonium chloride(DTAC) to provide theoretical guidance and prediction for the experimental design and ...This study presents the interaction between konjac glucanmannan(KGM) and cationic surfactant dodecyl trimethylammonium chloride(DTAC) to provide theoretical guidance and prediction for the experimental design and application of this composite system. Dissipative particle dynamics(DPD) method was used to simulate the interaction between KGM and the cationic surfactant. Influences of concentration, temperature and shear process on the structure and properties of aggregates were mainly examined. The results revealed that the density peak increased with the increase of concentration of KGM. With increasing the temperature, density peak moved to the right and increased, and then decreased when the temperature rose to a certain value. The density peak moved to the right at the low shear rate while decreased at the high one. During simulation, the high viscosity related to the low diffusion rate, which made it difficult to form a large continuous phase.展开更多
A mesoscopic model has been established to investigate the thermodynamic mechanisms and densification behavior of nickel-based superalloy during additive manufacturing/three-dimensional (3D) printing (AM/3DP) by n...A mesoscopic model has been established to investigate the thermodynamic mechanisms and densification behavior of nickel-based superalloy during additive manufacturing/three-dimensional (3D) printing (AM/3DP) by numerical simulation, using a finite volume method (FVM). The influence of the applied linear energy density (LED) on dimensions of the molten pool, thermodynamic mechanisms within the pool, bubbles migration and resultant densification behavior of AM/3DP-processed superalloy has been discussed. It reveals that the center of the molten pool slightly shifts with a lagging of 4 ktm towards the center of the moving laser beam. The Mar- angoni convection, which has various flow patterns, plays a crucial role in intensifying the convective heat and mass transfer, which is responsible for the bubbles migration and densification behavior of AM/3DP-processed parts. At an optimized LED of 221.5 J/m, the outward convection favors the numerous bubbles to escape from the molten pool easily and the resultant considerably high relative density of 98.9 % is achieved. However, as the applied LED further increases over 249.5 J/m, the convection pattern is apparently intensified with the formation of vortexes and the bubbles tend to be entrapped by the rotating flow within the molten pool, resulting in a large amount of residual porosity and a sharp reduction in densification of the superalloy. The change rules of the relative density and the corresponding distribution of porosity obtained by experiments are in accordance with the simulation results.展开更多
In this study, the defects in 3D printed Zr-based bulk metallic glasses(BMGs) fabricated by selective laser melting(SLM) under different energy densities have been investigated via both experimental and simulation app...In this study, the defects in 3D printed Zr-based bulk metallic glasses(BMGs) fabricated by selective laser melting(SLM) under different energy densities have been investigated via both experimental and simulation approaches. Different defects, including balling, interlayer pores, open pores and metallurgical pores, are detected in the 3D-printed Zr-based MGs depending on the energy inputs. Balling mainly occurs at a relatively low energy density(E<8.33 J/mm^3) due to the incomplete melting of particles, while interlayer pores and open pores are formed at modest energy densities(E=13.89-16.67 J/mm^3) because of incomplete welding and insufficient filling of molten liquid between layers. Fine metallurgical pores appear on the upper surface at relatively high energy densities(E=20.83-27.78 J/mm^3), which originate from gas escaping from molten pools during rapid solidification of the melt. Computational fluid dynamics(CFD) simulations are carried out to verify the experimental observations. The CFD simulations reveal that the various defects formed in the 3D-printed Zr-based BMG are related to the melt flow behaviours in the molten pools under different energy densities. The present work provides in-depth understandings of defect formation in the SLM process and provides methods for eliminating these defects in order to enhance the mechanical performance of 3D printed BMGs.展开更多
文摘The mesoscopic simulation technique was applied to describe the phase separation behavior ofpolyimide blends and used for design of immiscible polyimide/BN blend films with enhanced thermal conductivity. The simulation equilibrium morphologies of different poly(amic acid) (PAA) blend systems were investigated and compared with optical images of corresponding polyimide blend films obtained by experiment. The immiscible polyimide blend fihns containing nano-/micro-sized BN with vertical double percolation structure were prepared. The result indicated that the thermal conductivity of polyimide blend film with 25 wt% nano-sized BN reached 1,16 W/(m·K), which was 236% increment compared with that of the homogenous film containing the same BN ratio. The significant enhancement in thermal conductivity was attributed to the good phase separation of polyimide matrix, which made the inorganic fillers selectively localized in one continuous phase with high packing density, consequently, forming the effective thermal conductive pathway.
基金ProjectsupportedbytheNaturalScienceFoundationofShandongProvince (No .Y2 0 0 1B0 8)
文摘The aggregates in sodium dedecylsulphate (SDS)/dimethylbenzene/water systems have been investigated using dissipative particles dynamic (DPD) simulation method. Through analyzing three dimensional structures of aggregates, three simulated results are found. One is the phase separation, which is clearly observed by water density and the aggregates in the simulated cell; another is the water morphology in reverse micelle, which can be found through the isodensity slice of water including bound water, trapped water and bulky water; the third is about the water/oil interface, i.e., ionic surfactant molecules, SDS, prefer to exist in the interface between water and oil phase at the low concentration.
基金supported by the National Basic Research Program of China(2005CB221307 & 2005CB221304)China Postdoctoral Science Foundation(20090460391 & 201003138)PetroChina RIPED Innovations Foundation.
文摘Chemical flooding is one of the effective technologies to increase oil recovery of petroleum reservoirs after water flooding.Above the scale of representative elementary volume(REV), phenomenological modeling and numerical simulations of chemical flooding have been reported in literatures,but the studies alike are rarely conducted at the pore-scale,at which the effects of physicochemical hydrodynamics are hardly resolved either by experimental observations or by traditional continuum-based simulations.In this paper,dissipative particle dynamics(DPD),one of mesoscopic fluid particle methods,is introduced to simulate the pore-scale flow in chemical flooding processes.The theoretical background,mathematical formulation and numerical approach of DPD are presented.The plane Poiseuille flow is used to illustrate the accuracy of the DPD simulation,and then the processes of polymer flooding through an oil-wet throat and a water-wet throat are studies, respectively.The selected parameters of those simulations are given in details.These preliminary results show the potential of this novel method for modeling the physicochemical hydrodynamics at the pore scale in the area of chemical enhanced oil recovery.
基金This work was supported by the National Natural Scientific Foundation of China (Nos. 20603030, 10674114), 973 Project of the Ministry of Science and Technology of China (No. 2009CB930103) and the Shandong Provincial Natural Science Foundation of China (Nos. Q2008B07, Q2010BL023).
文摘The compatibility of the blend systems for olyactic acid (PLA)/tributyl citrate (TBC) and PLA/glycerol has been studied by molecule and mesoscopic dynamics methods. The results from glass transition temperature simulations showed that the compatibility of PLA/TBC system was better than that of PLA/glycerol, which were consistent with the conclusion obtained from the pair correlation functions. Besides, the behaviors of phase state distribution and evolution process were investigated by mesoscopic dynamics method as well. The results indicated that citrate ester was a better plasticizer than glycerol for PLA.
基金supported by the National Natural Science Foundation of China(31471704 and 31271837)
文摘This study presents the interaction between konjac glucanmannan(KGM) and cationic surfactant dodecyl trimethylammonium chloride(DTAC) to provide theoretical guidance and prediction for the experimental design and application of this composite system. Dissipative particle dynamics(DPD) method was used to simulate the interaction between KGM and the cationic surfactant. Influences of concentration, temperature and shear process on the structure and properties of aggregates were mainly examined. The results revealed that the density peak increased with the increase of concentration of KGM. With increasing the temperature, density peak moved to the right and increased, and then decreased when the temperature rose to a certain value. The density peak moved to the right at the low shear rate while decreased at the high one. During simulation, the high viscosity related to the low diffusion rate, which made it difficult to form a large continuous phase.
基金supported by the National Natural Science Foundation of China (51575267, 51322509)the Top-Notch Young Talents Program of China+9 种基金the Outstanding Youth Foundation of Jiangsu Province of China (BK20130035)the Program for New Century Excellent Talents in University (NCET-13-0854)the Science and Technology Support Program (the Industrial Part)Jiangsu Provincial Department of Science and Technology of China (BE2014009-2)the 333 high-level talents training project (BRA2015368)the Science and Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Human Resources and Social Security of Chinathe Aeronautical Science Foundation of China (2015ZE52051)the Shanghai Aerospace Science and Technology Innovation Fund (SAST2015053)the Fundamental Research Funds for the Central Universities (NE2013103, NP2015206 and NZ2016108)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A mesoscopic model has been established to investigate the thermodynamic mechanisms and densification behavior of nickel-based superalloy during additive manufacturing/three-dimensional (3D) printing (AM/3DP) by numerical simulation, using a finite volume method (FVM). The influence of the applied linear energy density (LED) on dimensions of the molten pool, thermodynamic mechanisms within the pool, bubbles migration and resultant densification behavior of AM/3DP-processed superalloy has been discussed. It reveals that the center of the molten pool slightly shifts with a lagging of 4 ktm towards the center of the moving laser beam. The Mar- angoni convection, which has various flow patterns, plays a crucial role in intensifying the convective heat and mass transfer, which is responsible for the bubbles migration and densification behavior of AM/3DP-processed parts. At an optimized LED of 221.5 J/m, the outward convection favors the numerous bubbles to escape from the molten pool easily and the resultant considerably high relative density of 98.9 % is achieved. However, as the applied LED further increases over 249.5 J/m, the convection pattern is apparently intensified with the formation of vortexes and the bubbles tend to be entrapped by the rotating flow within the molten pool, resulting in a large amount of residual porosity and a sharp reduction in densification of the superalloy. The change rules of the relative density and the corresponding distribution of porosity obtained by experiments are in accordance with the simulation results.
基金supported by the National Natural Science Foundation of China(Grant No.51531003)
文摘In this study, the defects in 3D printed Zr-based bulk metallic glasses(BMGs) fabricated by selective laser melting(SLM) under different energy densities have been investigated via both experimental and simulation approaches. Different defects, including balling, interlayer pores, open pores and metallurgical pores, are detected in the 3D-printed Zr-based MGs depending on the energy inputs. Balling mainly occurs at a relatively low energy density(E<8.33 J/mm^3) due to the incomplete melting of particles, while interlayer pores and open pores are formed at modest energy densities(E=13.89-16.67 J/mm^3) because of incomplete welding and insufficient filling of molten liquid between layers. Fine metallurgical pores appear on the upper surface at relatively high energy densities(E=20.83-27.78 J/mm^3), which originate from gas escaping from molten pools during rapid solidification of the melt. Computational fluid dynamics(CFD) simulations are carried out to verify the experimental observations. The CFD simulations reveal that the various defects formed in the 3D-printed Zr-based BMG are related to the melt flow behaviours in the molten pools under different energy densities. The present work provides in-depth understandings of defect formation in the SLM process and provides methods for eliminating these defects in order to enhance the mechanical performance of 3D printed BMGs.