The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical image...The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical imageprocessing while focusing on lung cancer Computed Tomography (CT) images. In this context, the paper proposesan improved lung cancer segmentation technique based on the strengths of nature-inspired approaches. Thebetter resolution of CT is exploited to distinguish healthy subjects from those who have lung cancer. In thisprocess, the visual challenges of the K-means are addressed with the integration of four nature-inspired swarmintelligent techniques. The techniques experimented in this paper are K-means with Artificial Bee Colony (ABC),K-means with Cuckoo Search Algorithm (CSA), K-means with Particle Swarm Optimization (PSO), and Kmeanswith Firefly Algorithm (FFA). The testing and evaluation are performed on Early Lung Cancer ActionProgram (ELCAP) database. The simulation analysis is performed using lung cancer images set against metrics:precision, sensitivity, specificity, f-measure, accuracy,Matthews Correlation Coefficient (MCC), Jaccard, and Dice.The detailed evaluation shows that the K-means with Cuckoo Search Algorithm (CSA) significantly improved thequality of lung cancer segmentation in comparison to the other optimization approaches utilized for lung cancerimages. The results exhibit that the proposed approach (K-means with CSA) achieves precision, sensitivity, and Fmeasureof 0.942, 0.964, and 0.953, respectively, and an average accuracy of 93%. The experimental results prove thatK-meanswithABC,K-meanswith PSO,K-meanswith FFA, andK-meanswithCSAhave achieved an improvementof 10.8%, 13.38%, 13.93%, and 15.7%, respectively, for accuracy measure in comparison to K-means segmentationfor lung cancer images. Further, it is highlighted that the proposed K-means with CSA have achieved a significantimprovement in accuracy, hence can be utilized by researchers for improved segmentation processes of medicalimage datasets for identifying the targeted region of interest.展开更多
It is one of the topics that have been studied extensively on maximum power point tracking(MPPT)recently.Traditional or soft computing methods are used for MPPT.Since soft computing approaches are more effective than ...It is one of the topics that have been studied extensively on maximum power point tracking(MPPT)recently.Traditional or soft computing methods are used for MPPT.Since soft computing approaches are more effective than traditional approaches,studies on MPPT have shifted in this direction.This study aims comparison of performance of seven meta-heuristic training algorithms in the neuro-fuzzy training for MPPT.The meta-heuristic training algorithms used are particle swarm optimization(PSO),harmony search(HS),cuckoo search(CS),artificial bee colony(ABC)algorithm,bee algorithm(BA),differential evolution(DE)and flower pollination algorithm(FPA).The antecedent and conclusion parameters of neuro-fuzzy are determined by these algorithms.The data of a 250 W photovoltaic(PV)is used in the applications.For effective MPPT,different neuro-fuzzy structures,different membership functions and different control parameter values are evaluated in detail.Related training algorithms are compared in terms of solution quality and convergence speed.The strengths and weaknesses of these algorithms are revealed.It is seen that the type and number of membership function,colony size,number of generations affect the solution quality and convergence speed of the training algorithms.As a result,it has been observed that CS and ABC algorithm are more effective than other algorithms in terms of solution quality and convergence in solving the related problem.展开更多
Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring(SHM). In this paper a new damage identific...Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring(SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP(Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms(GA), Artificial Immune System(AIS), Particle Swarm Optimization(PSO), and Artificial Bee Colony(ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine(TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine.展开更多
Finding a suitable solution to an optimization problem designed in science is a major challenge.Therefore,these must be addressed utilizing proper approaches.Based on a random search space,optimization algorithms can ...Finding a suitable solution to an optimization problem designed in science is a major challenge.Therefore,these must be addressed utilizing proper approaches.Based on a random search space,optimization algorithms can find acceptable solutions to problems.Archery Algorithm(AA)is a new stochastic approach for addressing optimization problems that is discussed in this study.The fundamental idea of developing the suggested AA is to imitate the archer’s shooting behavior toward the target panel.The proposed algorithm updates the location of each member of the population in each dimension of the search space by a member randomly marked by the archer.The AA is mathematically described,and its capacity to solve optimization problems is evaluated on twenty-three distinct types of objective functions.Furthermore,the proposed algorithm’s performance is compared vs.eight approaches,including teaching-learning based optimization,marine predators algorithm,genetic algorithm,grey wolf optimization,particle swarm optimization,whale optimization algorithm,gravitational search algorithm,and tunicate swarm algorithm.According to the simulation findings,the AA has a good capacity to tackle optimization issues in both unimodal and multimodal scenarios,and it can give adequate quasi-optimal solutions to these problems.The analysis and comparison of competing algorithms’performance with the proposed algorithm demonstrates the superiority and competitiveness of the AA.展开更多
Several instances of pneumonia with no clear etiology were recorded in Wuhan,China,on December 31,2019.The world health organization(WHO)called it COVID-19 that stands for“Coronavirus Disease 2019,”which is the seco...Several instances of pneumonia with no clear etiology were recorded in Wuhan,China,on December 31,2019.The world health organization(WHO)called it COVID-19 that stands for“Coronavirus Disease 2019,”which is the second version of the previously known severe acute respiratory syndrome(SARS)Coronavirus and identified in short as(SARSCoV-2).There have been regular restrictions to avoid the infection spread in all countries,including Saudi Arabia.The prediction of new cases of infections is crucial for authorities to get ready for early handling of the virus spread.Methodology:Analysis and forecasting of epidemic patterns in new SARSCoV-2 positive patients are presented in this research using metaheuristic optimization and long short-term memory(LSTM).The optimization method employed for optimizing the parameters of LSTM is Al-Biruni Earth Radius(BER)algorithm.Results:To evaluate the effectiveness of the proposed methodology,a dataset is collected based on the recorded cases in Saudi Arabia between March 7^(th),2020 and July 13^(th),2022.In addition,six regression models were included in the conducted experiments to show the effectiveness and superiority of the proposed approach.The achieved results show that the proposed approach could reduce the mean square error(MSE),mean absolute error(MAE),and R^(2)by 5.92%,3.66%,and 39.44%,respectively,when compared with the six base models.On the other hand,a statistical analysis is performed to measure the significance of the proposed approach.Conclusions:The achieved results confirm the effectiveness,superiority,and significance of the proposed approach in predicting the infection cases of COVID-19.展开更多
Rainfall plays a significant role in managing the water level in the reser-voir.The unpredictable amount of rainfall due to the climate change can cause either overflow or dry in the reservoir.Many individuals,especia...Rainfall plays a significant role in managing the water level in the reser-voir.The unpredictable amount of rainfall due to the climate change can cause either overflow or dry in the reservoir.Many individuals,especially those in the agricultural sector,rely on rain forecasts.Forecasting rainfall is challenging because of the changing nature of the weather.The area of Jimma in southwest Oromia,Ethiopia is the subject of this research,which aims to develop a rainfall forecasting model.To estimate Jimma's daily rainfall,we propose a novel approach based on optimizing the parameters of long short-term memory(LSTM)using Al-Biruni earth radius(BER)optimization algorithm for boosting the fore-casting accuracy.N ash-Sutcliffe model eficiency(NSE),mean square error(MSE),root MSE(RMSE),mean absolute error(MAE),and R2 were all used in the conducted experiments to assess the proposed approach,with final scores of(0.61),(430.81),(19.12),and(11.09),respectively.Moreover,we compared the proposed model to current machine-learning regression models;such as non-optimized LSTM,bidirectional LSTM(BiLSTM),gated recurrent unit(GRU),and convolutional LSTM(ConvLSTM).It was found that the proposed approach achieved the lowest RMSE of(19.12).In addition,the experimental results show that the proposed model has R-with a value outperforming the other models,which confirms the superiority of the proposed approach.On the other hand,a statistical analysis is performed to measure the significance and stability of the proposed approach and the recorded results proved the expected perfomance.展开更多
Some species of females,e.g.,chicken,bird,fish etc.,might mate with more than one males.In the mating of these polygamous creatures,there is competition between males as well as among their offspring.Thus,male reprodu...Some species of females,e.g.,chicken,bird,fish etc.,might mate with more than one males.In the mating of these polygamous creatures,there is competition between males as well as among their offspring.Thus,male reproductive success depends on both male competition and sperm rivalry.Inspired by this type of sexual life of roosters with chickens,a novel nature-inspired optimization algorithm called Roosters Algorithm(RA)is proposed.The algorithm was modelled and implemented based on the sexual behavior of roosters.13 well-known benchmark optimization functions and 10 IEEE CEC 2018 test functions are utilized to compare the performance of RA with the performance of well-known algorithms;Standard Genetic Algorithm(SGA),Differential Evolution(DE),Particle Swarm Optimization(PSO),Cuckoo Search(CS)and Grey Wolf Optimizer(GWO).Also,non-parametric statistical tests,Friedman and Wilcoxon Signed Rank Tests,were performed to demonstrate the significance of the results.In 20 of the 23 functions that were tested,RA either offered the best results or offered similar results to other compared algorithms.Thus,in this paper,we not only present a novel nature-inspired algorithm,but also offer an alternative method to the well-known algorithms commonly used in the literature,at least as effective as them.展开更多
Electromagnetism-like (EML) algorithm is a new evolutionary algorithm that bases on the electromagnetic attraction and repulsion among particles. It was originally proposed to solve optimization problems with bounded ...Electromagnetism-like (EML) algorithm is a new evolutionary algorithm that bases on the electromagnetic attraction and repulsion among particles. It was originally proposed to solve optimization problems with bounded variables. Since its inception, many variants of the EML algorithm have been proposed in the literature. However, it remains unclear how to simulate the electromagnetic heuristics in an EML algorithm effectively to achieve the best performance. This study surveys and compares the EML algorithms in the literature. Furthermore, local search and perturbed point are two techniques commonly used in an EML algorithm to fine tune the solution and to help escaping from local optimums, respectively. Performance study is conducted to understand their impact on an EML algorithm.展开更多
Small parasitic Hemipteran insects known as bedbugs(Cimicidae)feed on warm-blooded mammal’s blood.The most famous member of this family is the Cimex lectularius or common bedbug.The current paper proposes a novel swa...Small parasitic Hemipteran insects known as bedbugs(Cimicidae)feed on warm-blooded mammal’s blood.The most famous member of this family is the Cimex lectularius or common bedbug.The current paper proposes a novel swarm intelligence optimization algorithm called the Bedbug Meta-Heuristic Algorithm(BMHA).The primary inspiration for the bedbug algorithm comes from the static and dynamic swarming behaviors of bedbugs in nature.The two main stages of optimization algorithms,exploration,and exploitation,are designed by modeling bedbug social interaction to search for food.The proposed algorithm is benchmarked qualitatively and quantitatively using many test functions including CEC2019.The results of evaluating BMHA prove that this algorithm can improve the initial random population for a given optimization problem to converge towards global optimization and provide highly competitive results compared to other well-known optimization algorithms.The results also prove the new algorithm's performance in solving real optimization problems in unknown search spaces.To achieve this,the proposed algorithm has been used to select the features of fake news in a semi-supervised manner,the results of which show the good performance of the proposed algorithm in solving problems.展开更多
Energy issues have always been one of the most significant concerns for scientists worldwide.With the ongoing over exploitation and continued outbreaks of wars,traditional energy sources face the threat of depletion.W...Energy issues have always been one of the most significant concerns for scientists worldwide.With the ongoing over exploitation and continued outbreaks of wars,traditional energy sources face the threat of depletion.Wind energy is a readily available and sustainable energy source.Wind farm layout optimization problem,through scientifically arranging wind turbines,significantly enhances the efficiency of harnessing wind energy.Meta-heuristic algorithms have been widely employed in wind farm layout optimization.This paper introduces an Adaptive strategy-incorporated Integer Genetic Algorithm,referred to as AIGA,for optimizing wind farm layout problems.The adaptive strategy dynamically adjusts the placement of wind turbines,leading to a substantial improvement in energy utilization efficiency within the wind farm.In this study,AIGA is tested in four different wind conditions,alongside four other classical algorithms,to assess their energy conversion efficiency within the wind farm.Experimental results demonstrate a notable advantage of AIGA.展开更多
The optimization of discrete problems is largely encountered in engineering and information domains. Solving these problems with continuous-variables approach then convert the continuous variables to discrete ones doe...The optimization of discrete problems is largely encountered in engineering and information domains. Solving these problems with continuous-variables approach then convert the continuous variables to discrete ones does not guarantee the optimal global solution. Evolutionary Algorithms (EAs) have been applied successfully in combinatorial discrete optimization. Here, the mathematical basics of real-coding Genetic Algorithm are presented in addition to three other Evolutionary Algorithms: Particle Swarm Optimization (PSO), Ant Colony Algorithms (ACOA) and Harmony Search (HS). The EAs are presented in as unifying notations as possible in order to facilitate understanding and comparison. Our combinatorial discrete problem example is the famous benchmark case of New-York Water Supply System WSS network. The mathematical construction in addition to the obtained results of Real-coding GA applied to this case study (authors), are compared with those of the three other algorithms available in literature. The real representation of GA, with its two operators: mutation and crossover, functions significantly faster than binary and other coding and illustrates its potential as a substitute to the traditional optimization methods for water systems design and planning. The real (actual) representation is very effective and provides two near-optimal feasible solutions to the New York tunnels problem. We found that the four EAs are capable to afford hydraulically-feasible solutions with reasonable cost but our real-coding GA takes more evaluations to reach the optimal or near-optimal solutions compared to other EAs namely the HS. HS approach discovers efficiently the research space because of the random generation of solutions in every iteration, and the ability of choosing neighbor values of solution elements “changing the diameter of the pipe to the next greater or smaller commercial diameter” beside keeping good current solutions. Our proposed promising point to improve the performance of GA is by introducing completely new individuals in every generation in GA using a new “immigration” operator beside “mutation” and “crossover”.展开更多
The uncertainty inherent in power load forecasts represents a major factor in the mismatches between supply and demand in renewables-rich electricity networks, which consequently increases the energy bills and curtail...The uncertainty inherent in power load forecasts represents a major factor in the mismatches between supply and demand in renewables-rich electricity networks, which consequently increases the energy bills and curtailed generation. As the transition to a power grid founded on the so-called grid-of-grids becomes more evident, the need for distributed control algorithms capable of handling computationally challenging problems in the energy sector does so as well. In this light, the consensus-based distributed algorithm has recently been shown to provide an effective platform for solving the complex energy management problem in microgrids. More specifically, in a microgrid context, the consensus-based distributed algorithm requires reliable information exchange with customers to achieve convergence. However, packet losses remain an important issue, which can potentially result in the failure of the overall system. In this setting, this paper introduces a novel method to effectively characterize such packet losses during information exchange between the customers and the microgrid operator, whilst solving the microgrid scheduling optimization problem for a multi-agent-based microgrid. More specifically, the proposed framework leverages the virulence optimization algorithm and the earth-worm optimization algorithm to optimally shift the energy consumption during peak periods to lower-priced off-peak hours. The effectiveness of the proposed method in minimizing the overall active power mismatches in the presence of packet losses has also been demonstrated based on benchmarking the results against the business-as-usual iterative scheduling algorithm. Also, the robustness of the overall meta-heuristic- and multi-agent-based method in producing optimal results is confirmed based on comparing the results obtained by several well-established meta-heuristic optimization algorithms, including the binary particle swarm optimization, the genetic algorithm, and the cuckoo search optimization.展开更多
As part of a research activity at Politecnico di Torino, aiming to develop multi-disciplinary design procedures implementing nature inspired meta-heuristic algorithms, a performance design optimization procedure for h...As part of a research activity at Politecnico di Torino, aiming to develop multi-disciplinary design procedures implementing nature inspired meta-heuristic algorithms, a performance design optimization procedure for helicopter rotors has been developed and tested. The procedure optimizes the aerodynamic performance of blades by selecting the point of taper initiation, the root chord, the taper ratio, and the maximum twist which minimize horsepower for different flight regimes. Satisfactory aerodynamic performance is defined by the requirements which must hold for any flight condition: the required power must be minimized, both the section drag divergence Mach number on the advancing side of the rotor disc and the maximum section lift coefficient on the retreating side of the rotor disc must be avoided and, even more important, the rotor must be trimmed. The procedure uses a comprehensive mathematical model to estimate the trim states of the helicopter and the optimization algorithm consists of a repulsive particle swarm optimization program. A comparison with an evolutionary micro-genetic algorithm is also presented.展开更多
Many complex optimization problems in the real world can easily fall into local optimality and fail to find the optimal solution,so more new techniques and methods are needed to solve such challenges.Metaheuristic alg...Many complex optimization problems in the real world can easily fall into local optimality and fail to find the optimal solution,so more new techniques and methods are needed to solve such challenges.Metaheuristic algorithms have received a lot of attention in recent years because of their efficient performance and simple structure.Sine Cosine Algorithm(SCA)is a recent Metaheuristic algorithm that is based on two trigonometric functions Sine&Cosine.However,like all other metaheuristic algorithms,SCA has a slow convergence and may fail in sub-optimal regions.In this study,an enhanced version of SCA named RDSCA is suggested that depends on two techniques:random spare/replacement and double adaptive weight.The first technique is employed in SCA to speed the convergence whereas the second method is used to enhance exploratory searching capabilities.To evaluate RDSCA,30 functions from CEC 2017 and 4 real-world engineering problems are used.Moreover,a nonparametric test called Wilcoxon signed-rank is carried out at 5%level to evaluate the significance of the obtained results between RDSCA and the other 5 variants of SCA.The results show that RDSCA has competitive results with other metaheuristics algorithms.展开更多
Swarm intelligence in a bat algorithm(BA)provides social learning.Genetic operations for reproducing individuals in a genetic algorithm(GA)offer global search ability in solving complex optimization problems.Their int...Swarm intelligence in a bat algorithm(BA)provides social learning.Genetic operations for reproducing individuals in a genetic algorithm(GA)offer global search ability in solving complex optimization problems.Their integration provides an opportunity for improved search performance.However,existing studies adopt only one genetic operation of GA,or design hybrid algorithms that divide the overall population into multiple subpopulations that evolve in parallel with limited interactions only.Differing from them,this work proposes an improved self-adaptive bat algorithm with genetic operations(SBAGO)where GA and BA are combined in a highly integrated way.Specifically,SBAGO performs their genetic operations of GA on previous search information of BA solutions to produce new exemplars that are of high-diversity and high-quality.Guided by these exemplars,SBAGO improves both BA’s efficiency and global search capability.We evaluate this approach by using 29 widely-adopted problems from four test suites.SBAGO is also evaluated by a real-life optimization problem in mobile edge computing systems.Experimental results show that SBAGO outperforms its widely-used and recently proposed peers in terms of effectiveness,search accuracy,local optima avoidance,and robustness.展开更多
This paper presents four different hybrid genetic algorithms for network design problem in closed loop supply chain. They are compared using a complete factorial experiment with two factors, viz. problem size and algo...This paper presents four different hybrid genetic algorithms for network design problem in closed loop supply chain. They are compared using a complete factorial experiment with two factors, viz. problem size and algorithm. Based on the significance of the factor “algorithm”, the best algorithm is identified using Duncan’s multiple range test. Then it is compared with a mathematical model in terms of total cost. It is found that the best hybrid genetic algorithm identified gives results on par with the mathematical model in statistical terms. So, the best algorithm out of four algorithm proposed in this paper is proved to be superior to all other algorithms for all sizes of problems and its performance is equal to that of the mathematical model for small size and medium size problems.展开更多
One of the main problems of machine learning and data mining is to develop a basic model with a few features,to reduce the algorithms involved in classification’s computational complexity.In this paper,the collection...One of the main problems of machine learning and data mining is to develop a basic model with a few features,to reduce the algorithms involved in classification’s computational complexity.In this paper,the collection of features has an essential importance in the classification process to be able minimize computational time,which decreases data size and increases the precision and effectiveness of specific machine learning activities.Due to its superiority to conventional optimization methods,several metaheuristics have been used to resolve FS issues.This is why hybrid metaheuristics help increase the search and convergence rate of the critical algorithms.A modern hybrid selection algorithm combining the two algorithms;the genetic algorithm(GA)and the Particle Swarm Optimization(PSO)to enhance search capabilities is developed in this paper.The efficacy of our proposed method is illustrated in a series of simulation phases,using the UCI learning array as a benchmark dataset.展开更多
Advancement in multimedia technology has resulted in protection against distortion,modification,and piracy.For implementing such protection,we have an existing technique called watermarking but obtaining desired disto...Advancement in multimedia technology has resulted in protection against distortion,modification,and piracy.For implementing such protection,we have an existing technique called watermarking but obtaining desired distortion level with sufficient robustness is a challenging task for watermarking in multimedia applications.In the paper,we proposed a smart technique for video watermarking associating meta-heuristic algorithms along with an embedding method to gain an optimized efficiency.The main aim of the optimization algorithm is to obtain solutions with maximum robustness,and which should not exceed the set threshold of quality.To represent the accuracy of the proposed scheme,we employ a popular video watermarking technique(DCT domain)having frame selection and embedding method for watermarking.A squirrel search algorithm is chosen as a meta-heuristic algorithm that utilizes the stated fitness function.The results indicate that quality constraint is fulfilled,and the proposed technique gives improved robustness against different attacks with several quality thresholds.The proposed technique could be practically implemented in several multimedia applications such as the films industry,medical imagery,OOT platforms,etc.展开更多
Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatoria...Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatorial optimization problem,which is widely applied in communication networks,multimodal transportation networks,and data compression.Some approximation algorithms and heuristics algorithms have been proposed for the problem.Firefly algorithm is a new meta-heuristic algorithm.Because of its simplicity and easy implementation,it has been successfully applied in various fields.However,the basic firefly algorithm is not suitable for discrete problems.To this end,a novel discrete firefly algorithm for the MLST problem is proposed in this paper.A binary operation method to update firefly positions and a local feasible handling method are introduced,which correct unfeasible solutions,eliminate redundant labels,and make the algorithm more suitable for discrete problems.Computational results show that the algorithm has good performance.The algorithm can be extended to solve other discrete optimization problems.展开更多
基金the Researchers Supporting Project(RSP2023R395),King Saud University,Riyadh,Saudi Arabia.
文摘The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical imageprocessing while focusing on lung cancer Computed Tomography (CT) images. In this context, the paper proposesan improved lung cancer segmentation technique based on the strengths of nature-inspired approaches. Thebetter resolution of CT is exploited to distinguish healthy subjects from those who have lung cancer. In thisprocess, the visual challenges of the K-means are addressed with the integration of four nature-inspired swarmintelligent techniques. The techniques experimented in this paper are K-means with Artificial Bee Colony (ABC),K-means with Cuckoo Search Algorithm (CSA), K-means with Particle Swarm Optimization (PSO), and Kmeanswith Firefly Algorithm (FFA). The testing and evaluation are performed on Early Lung Cancer ActionProgram (ELCAP) database. The simulation analysis is performed using lung cancer images set against metrics:precision, sensitivity, specificity, f-measure, accuracy,Matthews Correlation Coefficient (MCC), Jaccard, and Dice.The detailed evaluation shows that the K-means with Cuckoo Search Algorithm (CSA) significantly improved thequality of lung cancer segmentation in comparison to the other optimization approaches utilized for lung cancerimages. The results exhibit that the proposed approach (K-means with CSA) achieves precision, sensitivity, and Fmeasureof 0.942, 0.964, and 0.953, respectively, and an average accuracy of 93%. The experimental results prove thatK-meanswithABC,K-meanswith PSO,K-meanswith FFA, andK-meanswithCSAhave achieved an improvementof 10.8%, 13.38%, 13.93%, and 15.7%, respectively, for accuracy measure in comparison to K-means segmentationfor lung cancer images. Further, it is highlighted that the proposed K-means with CSA have achieved a significantimprovement in accuracy, hence can be utilized by researchers for improved segmentation processes of medicalimage datasets for identifying the targeted region of interest.
文摘It is one of the topics that have been studied extensively on maximum power point tracking(MPPT)recently.Traditional or soft computing methods are used for MPPT.Since soft computing approaches are more effective than traditional approaches,studies on MPPT have shifted in this direction.This study aims comparison of performance of seven meta-heuristic training algorithms in the neuro-fuzzy training for MPPT.The meta-heuristic training algorithms used are particle swarm optimization(PSO),harmony search(HS),cuckoo search(CS),artificial bee colony(ABC)algorithm,bee algorithm(BA),differential evolution(DE)and flower pollination algorithm(FPA).The antecedent and conclusion parameters of neuro-fuzzy are determined by these algorithms.The data of a 250 W photovoltaic(PV)is used in the applications.For effective MPPT,different neuro-fuzzy structures,different membership functions and different control parameter values are evaluated in detail.Related training algorithms are compared in terms of solution quality and convergence speed.The strengths and weaknesses of these algorithms are revealed.It is seen that the type and number of membership function,colony size,number of generations affect the solution quality and convergence speed of the training algorithms.As a result,it has been observed that CS and ABC algorithm are more effective than other algorithms in terms of solution quality and convergence in solving the related problem.
文摘Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring(SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP(Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms(GA), Artificial Immune System(AIS), Particle Swarm Optimization(PSO), and Artificial Bee Colony(ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine(TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine.
基金The research was supported by the Excellence Project PrF UHK No.2208/2021-2022,University of Hradec Kralove,Czech Republic.
文摘Finding a suitable solution to an optimization problem designed in science is a major challenge.Therefore,these must be addressed utilizing proper approaches.Based on a random search space,optimization algorithms can find acceptable solutions to problems.Archery Algorithm(AA)is a new stochastic approach for addressing optimization problems that is discussed in this study.The fundamental idea of developing the suggested AA is to imitate the archer’s shooting behavior toward the target panel.The proposed algorithm updates the location of each member of the population in each dimension of the search space by a member randomly marked by the archer.The AA is mathematically described,and its capacity to solve optimization problems is evaluated on twenty-three distinct types of objective functions.Furthermore,the proposed algorithm’s performance is compared vs.eight approaches,including teaching-learning based optimization,marine predators algorithm,genetic algorithm,grey wolf optimization,particle swarm optimization,whale optimization algorithm,gravitational search algorithm,and tunicate swarm algorithm.According to the simulation findings,the AA has a good capacity to tackle optimization issues in both unimodal and multimodal scenarios,and it can give adequate quasi-optimal solutions to these problems.The analysis and comparison of competing algorithms’performance with the proposed algorithm demonstrates the superiority and competitiveness of the AA.
文摘Several instances of pneumonia with no clear etiology were recorded in Wuhan,China,on December 31,2019.The world health organization(WHO)called it COVID-19 that stands for“Coronavirus Disease 2019,”which is the second version of the previously known severe acute respiratory syndrome(SARS)Coronavirus and identified in short as(SARSCoV-2).There have been regular restrictions to avoid the infection spread in all countries,including Saudi Arabia.The prediction of new cases of infections is crucial for authorities to get ready for early handling of the virus spread.Methodology:Analysis and forecasting of epidemic patterns in new SARSCoV-2 positive patients are presented in this research using metaheuristic optimization and long short-term memory(LSTM).The optimization method employed for optimizing the parameters of LSTM is Al-Biruni Earth Radius(BER)algorithm.Results:To evaluate the effectiveness of the proposed methodology,a dataset is collected based on the recorded cases in Saudi Arabia between March 7^(th),2020 and July 13^(th),2022.In addition,six regression models were included in the conducted experiments to show the effectiveness and superiority of the proposed approach.The achieved results show that the proposed approach could reduce the mean square error(MSE),mean absolute error(MAE),and R^(2)by 5.92%,3.66%,and 39.44%,respectively,when compared with the six base models.On the other hand,a statistical analysis is performed to measure the significance of the proposed approach.Conclusions:The achieved results confirm the effectiveness,superiority,and significance of the proposed approach in predicting the infection cases of COVID-19.
文摘Rainfall plays a significant role in managing the water level in the reser-voir.The unpredictable amount of rainfall due to the climate change can cause either overflow or dry in the reservoir.Many individuals,especially those in the agricultural sector,rely on rain forecasts.Forecasting rainfall is challenging because of the changing nature of the weather.The area of Jimma in southwest Oromia,Ethiopia is the subject of this research,which aims to develop a rainfall forecasting model.To estimate Jimma's daily rainfall,we propose a novel approach based on optimizing the parameters of long short-term memory(LSTM)using Al-Biruni earth radius(BER)optimization algorithm for boosting the fore-casting accuracy.N ash-Sutcliffe model eficiency(NSE),mean square error(MSE),root MSE(RMSE),mean absolute error(MAE),and R2 were all used in the conducted experiments to assess the proposed approach,with final scores of(0.61),(430.81),(19.12),and(11.09),respectively.Moreover,we compared the proposed model to current machine-learning regression models;such as non-optimized LSTM,bidirectional LSTM(BiLSTM),gated recurrent unit(GRU),and convolutional LSTM(ConvLSTM).It was found that the proposed approach achieved the lowest RMSE of(19.12).In addition,the experimental results show that the proposed model has R-with a value outperforming the other models,which confirms the superiority of the proposed approach.On the other hand,a statistical analysis is performed to measure the significance and stability of the proposed approach and the recorded results proved the expected perfomance.
文摘Some species of females,e.g.,chicken,bird,fish etc.,might mate with more than one males.In the mating of these polygamous creatures,there is competition between males as well as among their offspring.Thus,male reproductive success depends on both male competition and sperm rivalry.Inspired by this type of sexual life of roosters with chickens,a novel nature-inspired optimization algorithm called Roosters Algorithm(RA)is proposed.The algorithm was modelled and implemented based on the sexual behavior of roosters.13 well-known benchmark optimization functions and 10 IEEE CEC 2018 test functions are utilized to compare the performance of RA with the performance of well-known algorithms;Standard Genetic Algorithm(SGA),Differential Evolution(DE),Particle Swarm Optimization(PSO),Cuckoo Search(CS)and Grey Wolf Optimizer(GWO).Also,non-parametric statistical tests,Friedman and Wilcoxon Signed Rank Tests,were performed to demonstrate the significance of the results.In 20 of the 23 functions that were tested,RA either offered the best results or offered similar results to other compared algorithms.Thus,in this paper,we not only present a novel nature-inspired algorithm,but also offer an alternative method to the well-known algorithms commonly used in the literature,at least as effective as them.
文摘Electromagnetism-like (EML) algorithm is a new evolutionary algorithm that bases on the electromagnetic attraction and repulsion among particles. It was originally proposed to solve optimization problems with bounded variables. Since its inception, many variants of the EML algorithm have been proposed in the literature. However, it remains unclear how to simulate the electromagnetic heuristics in an EML algorithm effectively to achieve the best performance. This study surveys and compares the EML algorithms in the literature. Furthermore, local search and perturbed point are two techniques commonly used in an EML algorithm to fine tune the solution and to help escaping from local optimums, respectively. Performance study is conducted to understand their impact on an EML algorithm.
文摘Small parasitic Hemipteran insects known as bedbugs(Cimicidae)feed on warm-blooded mammal’s blood.The most famous member of this family is the Cimex lectularius or common bedbug.The current paper proposes a novel swarm intelligence optimization algorithm called the Bedbug Meta-Heuristic Algorithm(BMHA).The primary inspiration for the bedbug algorithm comes from the static and dynamic swarming behaviors of bedbugs in nature.The two main stages of optimization algorithms,exploration,and exploitation,are designed by modeling bedbug social interaction to search for food.The proposed algorithm is benchmarked qualitatively and quantitatively using many test functions including CEC2019.The results of evaluating BMHA prove that this algorithm can improve the initial random population for a given optimization problem to converge towards global optimization and provide highly competitive results compared to other well-known optimization algorithms.The results also prove the new algorithm's performance in solving real optimization problems in unknown search spaces.To achieve this,the proposed algorithm has been used to select the features of fake news in a semi-supervised manner,the results of which show the good performance of the proposed algorithm in solving problems.
基金supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI under Grant JP22H03643,Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)under Grant JPMJSP2145JST through the Establishment of University Fellowships towards the Creation of Science Technology Innovation under Grant JPMJFS2115.
文摘Energy issues have always been one of the most significant concerns for scientists worldwide.With the ongoing over exploitation and continued outbreaks of wars,traditional energy sources face the threat of depletion.Wind energy is a readily available and sustainable energy source.Wind farm layout optimization problem,through scientifically arranging wind turbines,significantly enhances the efficiency of harnessing wind energy.Meta-heuristic algorithms have been widely employed in wind farm layout optimization.This paper introduces an Adaptive strategy-incorporated Integer Genetic Algorithm,referred to as AIGA,for optimizing wind farm layout problems.The adaptive strategy dynamically adjusts the placement of wind turbines,leading to a substantial improvement in energy utilization efficiency within the wind farm.In this study,AIGA is tested in four different wind conditions,alongside four other classical algorithms,to assess their energy conversion efficiency within the wind farm.Experimental results demonstrate a notable advantage of AIGA.
文摘The optimization of discrete problems is largely encountered in engineering and information domains. Solving these problems with continuous-variables approach then convert the continuous variables to discrete ones does not guarantee the optimal global solution. Evolutionary Algorithms (EAs) have been applied successfully in combinatorial discrete optimization. Here, the mathematical basics of real-coding Genetic Algorithm are presented in addition to three other Evolutionary Algorithms: Particle Swarm Optimization (PSO), Ant Colony Algorithms (ACOA) and Harmony Search (HS). The EAs are presented in as unifying notations as possible in order to facilitate understanding and comparison. Our combinatorial discrete problem example is the famous benchmark case of New-York Water Supply System WSS network. The mathematical construction in addition to the obtained results of Real-coding GA applied to this case study (authors), are compared with those of the three other algorithms available in literature. The real representation of GA, with its two operators: mutation and crossover, functions significantly faster than binary and other coding and illustrates its potential as a substitute to the traditional optimization methods for water systems design and planning. The real (actual) representation is very effective and provides two near-optimal feasible solutions to the New York tunnels problem. We found that the four EAs are capable to afford hydraulically-feasible solutions with reasonable cost but our real-coding GA takes more evaluations to reach the optimal or near-optimal solutions compared to other EAs namely the HS. HS approach discovers efficiently the research space because of the random generation of solutions in every iteration, and the ability of choosing neighbor values of solution elements “changing the diameter of the pipe to the next greater or smaller commercial diameter” beside keeping good current solutions. Our proposed promising point to improve the performance of GA is by introducing completely new individuals in every generation in GA using a new “immigration” operator beside “mutation” and “crossover”.
文摘The uncertainty inherent in power load forecasts represents a major factor in the mismatches between supply and demand in renewables-rich electricity networks, which consequently increases the energy bills and curtailed generation. As the transition to a power grid founded on the so-called grid-of-grids becomes more evident, the need for distributed control algorithms capable of handling computationally challenging problems in the energy sector does so as well. In this light, the consensus-based distributed algorithm has recently been shown to provide an effective platform for solving the complex energy management problem in microgrids. More specifically, in a microgrid context, the consensus-based distributed algorithm requires reliable information exchange with customers to achieve convergence. However, packet losses remain an important issue, which can potentially result in the failure of the overall system. In this setting, this paper introduces a novel method to effectively characterize such packet losses during information exchange between the customers and the microgrid operator, whilst solving the microgrid scheduling optimization problem for a multi-agent-based microgrid. More specifically, the proposed framework leverages the virulence optimization algorithm and the earth-worm optimization algorithm to optimally shift the energy consumption during peak periods to lower-priced off-peak hours. The effectiveness of the proposed method in minimizing the overall active power mismatches in the presence of packet losses has also been demonstrated based on benchmarking the results against the business-as-usual iterative scheduling algorithm. Also, the robustness of the overall meta-heuristic- and multi-agent-based method in producing optimal results is confirmed based on comparing the results obtained by several well-established meta-heuristic optimization algorithms, including the binary particle swarm optimization, the genetic algorithm, and the cuckoo search optimization.
文摘As part of a research activity at Politecnico di Torino, aiming to develop multi-disciplinary design procedures implementing nature inspired meta-heuristic algorithms, a performance design optimization procedure for helicopter rotors has been developed and tested. The procedure optimizes the aerodynamic performance of blades by selecting the point of taper initiation, the root chord, the taper ratio, and the maximum twist which minimize horsepower for different flight regimes. Satisfactory aerodynamic performance is defined by the requirements which must hold for any flight condition: the required power must be minimized, both the section drag divergence Mach number on the advancing side of the rotor disc and the maximum section lift coefficient on the retreating side of the rotor disc must be avoided and, even more important, the rotor must be trimmed. The procedure uses a comprehensive mathematical model to estimate the trim states of the helicopter and the optimization algorithm consists of a repulsive particle swarm optimization program. A comparison with an evolutionary micro-genetic algorithm is also presented.
基金supported in part by the Hangzhou Science and Technology Development Plan Project(Grant No.20191203B30).
文摘Many complex optimization problems in the real world can easily fall into local optimality and fail to find the optimal solution,so more new techniques and methods are needed to solve such challenges.Metaheuristic algorithms have received a lot of attention in recent years because of their efficient performance and simple structure.Sine Cosine Algorithm(SCA)is a recent Metaheuristic algorithm that is based on two trigonometric functions Sine&Cosine.However,like all other metaheuristic algorithms,SCA has a slow convergence and may fail in sub-optimal regions.In this study,an enhanced version of SCA named RDSCA is suggested that depends on two techniques:random spare/replacement and double adaptive weight.The first technique is employed in SCA to speed the convergence whereas the second method is used to enhance exploratory searching capabilities.To evaluate RDSCA,30 functions from CEC 2017 and 4 real-world engineering problems are used.Moreover,a nonparametric test called Wilcoxon signed-rank is carried out at 5%level to evaluate the significance of the obtained results between RDSCA and the other 5 variants of SCA.The results show that RDSCA has competitive results with other metaheuristics algorithms.
基金This work was supported in part by the Fundamental Research Funds for the Central Universities(YWF-22-L-1203)the National Natural Science Foundation of China(62173013,62073005)+1 种基金the National Key Research and Development Program of China(2020YFB1712203)U.S.National Science Foundation(CCF-0939370,CCF-1908308).
文摘Swarm intelligence in a bat algorithm(BA)provides social learning.Genetic operations for reproducing individuals in a genetic algorithm(GA)offer global search ability in solving complex optimization problems.Their integration provides an opportunity for improved search performance.However,existing studies adopt only one genetic operation of GA,or design hybrid algorithms that divide the overall population into multiple subpopulations that evolve in parallel with limited interactions only.Differing from them,this work proposes an improved self-adaptive bat algorithm with genetic operations(SBAGO)where GA and BA are combined in a highly integrated way.Specifically,SBAGO performs their genetic operations of GA on previous search information of BA solutions to produce new exemplars that are of high-diversity and high-quality.Guided by these exemplars,SBAGO improves both BA’s efficiency and global search capability.We evaluate this approach by using 29 widely-adopted problems from four test suites.SBAGO is also evaluated by a real-life optimization problem in mobile edge computing systems.Experimental results show that SBAGO outperforms its widely-used and recently proposed peers in terms of effectiveness,search accuracy,local optima avoidance,and robustness.
文摘This paper presents four different hybrid genetic algorithms for network design problem in closed loop supply chain. They are compared using a complete factorial experiment with two factors, viz. problem size and algorithm. Based on the significance of the factor “algorithm”, the best algorithm is identified using Duncan’s multiple range test. Then it is compared with a mathematical model in terms of total cost. It is found that the best hybrid genetic algorithm identified gives results on par with the mathematical model in statistical terms. So, the best algorithm out of four algorithm proposed in this paper is proved to be superior to all other algorithms for all sizes of problems and its performance is equal to that of the mathematical model for small size and medium size problems.
基金This work was partially supported by the National Natural Science Foundation of China(61876089,61876185,61902281,61375121)the Opening Project of Jiangsu Key Laboratory of Data Science and Smart Software(No.2019DS301)+1 种基金the Engineering Research Center of Digital Forensics,Ministry of Education,the Key Research and Development Program of Jiangsu Province(BE2020633)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘One of the main problems of machine learning and data mining is to develop a basic model with a few features,to reduce the algorithms involved in classification’s computational complexity.In this paper,the collection of features has an essential importance in the classification process to be able minimize computational time,which decreases data size and increases the precision and effectiveness of specific machine learning activities.Due to its superiority to conventional optimization methods,several metaheuristics have been used to resolve FS issues.This is why hybrid metaheuristics help increase the search and convergence rate of the critical algorithms.A modern hybrid selection algorithm combining the two algorithms;the genetic algorithm(GA)and the Particle Swarm Optimization(PSO)to enhance search capabilities is developed in this paper.The efficacy of our proposed method is illustrated in a series of simulation phases,using the UCI learning array as a benchmark dataset.
文摘Advancement in multimedia technology has resulted in protection against distortion,modification,and piracy.For implementing such protection,we have an existing technique called watermarking but obtaining desired distortion level with sufficient robustness is a challenging task for watermarking in multimedia applications.In the paper,we proposed a smart technique for video watermarking associating meta-heuristic algorithms along with an embedding method to gain an optimized efficiency.The main aim of the optimization algorithm is to obtain solutions with maximum robustness,and which should not exceed the set threshold of quality.To represent the accuracy of the proposed scheme,we employ a popular video watermarking technique(DCT domain)having frame selection and embedding method for watermarking.A squirrel search algorithm is chosen as a meta-heuristic algorithm that utilizes the stated fitness function.The results indicate that quality constraint is fulfilled,and the proposed technique gives improved robustness against different attacks with several quality thresholds.The proposed technique could be practically implemented in several multimedia applications such as the films industry,medical imagery,OOT platforms,etc.
基金This work is supported by the National Natural Science Foundation of China under Grant 61772179the Hunan Provincial Natural Science Foundation of China under Grant 2019JJ40005+3 种基金the Science and Technology Plan Project of Hunan Province under Grant 2016TP1020the Double First-Class University Project of Hunan Province under Grant Xiangjiaotong[2018]469the Open Fund Project of Hunan Provincial Key Laboratory of Intelligent Information Processing and Application for Hengyang Normal University under Grant IIPA19K02the Science Foundation of Hengyang Normal University under Grant 19QD13.
文摘Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatorial optimization problem,which is widely applied in communication networks,multimodal transportation networks,and data compression.Some approximation algorithms and heuristics algorithms have been proposed for the problem.Firefly algorithm is a new meta-heuristic algorithm.Because of its simplicity and easy implementation,it has been successfully applied in various fields.However,the basic firefly algorithm is not suitable for discrete problems.To this end,a novel discrete firefly algorithm for the MLST problem is proposed in this paper.A binary operation method to update firefly positions and a local feasible handling method are introduced,which correct unfeasible solutions,eliminate redundant labels,and make the algorithm more suitable for discrete problems.Computational results show that the algorithm has good performance.The algorithm can be extended to solve other discrete optimization problems.