期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Trace element characteristics of partial melts produced by melting of metabasalts at high pressures: Constraints on the formation condition of adakitic melts 被引量:33
1
作者 J. Adam T.H. Green 《Science China Earth Sciences》 SCIE EI CAS 2006年第9期915-925,共11页
Experiments were conducted on a natural basalt (with 5 wt.% added H2O) at 1.0―2.5 GPa and 900―1100℃. Experimental products include partial melts (quenched glasses) + residual mineral assemblages of amphibolite or e... Experiments were conducted on a natural basalt (with 5 wt.% added H2O) at 1.0―2.5 GPa and 900―1100℃. Experimental products include partial melts (quenched glasses) + residual mineral assemblages of amphibolite or eclogite. Electron microprobe and LAM-ICP-MS were used to determine major and trace element compositions of these quenched melts, respectively. Major ele- ment compositions of all the melts are tonalitic- trondhjemitic, similar to adakite. Their trace element characteristics are controlled by coexisting residual minerals. Signatures of adakite such as high Sr/Y, low HREE and negative Nb-Ta anomaly, etc. are present only in the melts coexisting with residual assemblages containing rutile and garnet (rutile-bearing eclogite or rutile-bearing amphibole-eclogite). Garnet leads to HREE depletion in melts, whereas rutile controls Nb and Ta partitioning during the partial melting and causes negative Nb-Ta anomaly in melts. Therefore, in addition to garnet, rutile is also a necessary residual phase during the generation of adakite or TTG magmas to account for the negative Nb-Ta anomaly of the magmas. The depth for the generation of adakite/TTG magmas via melting of metabasalt must be more than about 50 km based on the approximate 1.5 GPa mini- mum-pressure for rutile stability in the partial melting field of hydrous basalt. 展开更多
关键词 trace element adakite/TrG magmas partial MELTING of metabasalt negative Nb-Ta anomaly rutile.
原文传递
Further Study on Geochemical Characteristics and Genesis of the Boninitic Rocks from Bikou Group, Northern Yangtze Plate 被引量:1
2
作者 李永飞 赖绍聪 秦江锋 《Journal of China University of Geosciences》 SCIE CSCD 2006年第2期126-131,共6页
Compared with the major and trace elements of typical boninite, the metabasalts collected from the Nanfanba (南范坝)-Miaowanli (庙湾里) region in the Bikou (碧口) block could be treated as boninite characterized... Compared with the major and trace elements of typical boninite, the metabasalts collected from the Nanfanba (南范坝)-Miaowanli (庙湾里) region in the Bikou (碧口) block could be treated as boninite characterized by low-Si, low-Ti, low-P, high-Mg^2 and high Al2O3/TiO2, consistent with geochemical features of boninite. The normal mid-ocean ridge basalt (N-MORB) normalized spider diagram displays fairly depleted high field strong elements (HFSE) (Zr, Y, Ti). Enriched refractory elements (Cr, Co, Ni) as well as light rare earth elements (LREE)-depleted chondrite-normalized REE distribution patterns suggest the boninitic magmas are derived from an extremely depleted mantle wedge in the presence of a hydrous fluid, meanwhile signifying the source region had previously undergone a high degree partial melting process yielding primary magmas with enriched large ion lithophile elements (LILE). In addition, almost all the samples in the Nb-Zr-Y and Ti-Zr-Y discrimination diagrams were plotted in the island arc basalt (IAB) field. Coupled with the island arc tholeiitic (IAT) basalt in the study region, therefore, the geochemical characteristics of the studied rocks indicate the meta-basalts probably occurred in a fore-arc subduction setting. This conclusion may be of great significance for the further study of the tectonic background of the Bikou volcanism. 展开更多
关键词 boninitic rock GEOCHEMISTRY metabasalts Bikou Group.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部