Natural products(NPs) are compounds that are derived from natural sources such as plants, animals, and microisms. Therapeutics has benefited from numerous drug classes derived from natural product sources. The Biophar...Natural products(NPs) are compounds that are derived from natural sources such as plants, animals, and microisms. Therapeutics has benefited from numerous drug classes derived from natural product sources. The Biopharmaceutics Drug position Classification System(BDDCS) was proposed to serve as a basis for predicting the importance of transporters and enzymes in determining drug bioavailability and disposition. It categorizes drugs into one of four biopharmaceutical classes according to their water solubility and extent of metabolism. The present paper reviews 109 drugs from natural product sources: 29% belong to class 1(high solubility, extensive metabolism), 22% to class 2(low solubility, extensive metabolism), 40% to class 3(high solubility, poor metabolism), and 9% to class 4(low solubility, poor metabolism). Herein we evaluated the characteristics of NPs in terms of BDDCS class for all 109 drugs as wells as for subsets of NPs drugs derived from plant sources as antibiotics. In the 109 NPs drugs, we piled 32 drugs from plants, 50%(16) of total in class 1, 22%(7) in class 2 and 28%(9) in class 3, none found in class 4; Meantime, the antibiotics were found 5(16%) in class 2, 22(71%) in class 3, and 4(13%) in class 4; no drug was found in class 1. Based on this classification, we anticipate BDDCS to serve as a useful adjunct in evaluating the potential characteristics of new natural products.展开更多
基金supported by China Scholarship Council(No.201208320187CSC)
文摘Natural products(NPs) are compounds that are derived from natural sources such as plants, animals, and microisms. Therapeutics has benefited from numerous drug classes derived from natural product sources. The Biopharmaceutics Drug position Classification System(BDDCS) was proposed to serve as a basis for predicting the importance of transporters and enzymes in determining drug bioavailability and disposition. It categorizes drugs into one of four biopharmaceutical classes according to their water solubility and extent of metabolism. The present paper reviews 109 drugs from natural product sources: 29% belong to class 1(high solubility, extensive metabolism), 22% to class 2(low solubility, extensive metabolism), 40% to class 3(high solubility, poor metabolism), and 9% to class 4(low solubility, poor metabolism). Herein we evaluated the characteristics of NPs in terms of BDDCS class for all 109 drugs as wells as for subsets of NPs drugs derived from plant sources as antibiotics. In the 109 NPs drugs, we piled 32 drugs from plants, 50%(16) of total in class 1, 22%(7) in class 2 and 28%(9) in class 3, none found in class 4; Meantime, the antibiotics were found 5(16%) in class 2, 22(71%) in class 3, and 4(13%) in class 4; no drug was found in class 1. Based on this classification, we anticipate BDDCS to serve as a useful adjunct in evaluating the potential characteristics of new natural products.