期刊文献+
共找到5,330篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of Nitric Oxide on the Germination of Wheat Seeds and Its Reactive Oxygen Species Metabolisms Under Osmotic Stress 被引量:51
1
作者 张华 沈文飚 徐朗莱 《Acta Botanica Sinica》 CSCD 2003年第8期901-905,共5页
Effects of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on the germination and metabolism of reactive oxygen species were surveyed in wheat (Triticum aestivum L.) seeds. Germination of wheat seeds and even t... Effects of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on the germination and metabolism of reactive oxygen species were surveyed in wheat (Triticum aestivum L.) seeds. Germination of wheat seeds and even the elongation of radicle and plumule were dramatically promoted by SNP treatments during the germination under osmotic stress. Meanwhile, activities of amylase and EP were enhanced, thus leading to the degradation of storage reserve in seeds. After osmotic stress was removed, higher viability of wheat seeds was also maintained. In addition, the activities of CAT, APX and the content of proline were increased by SNP treatment simultaneously, but activities of LOX were inhibited, and both of which were beneficial for improving the antioxidant capacity during the germination of wheat seeds under osmotic stress. It was also shown that the increase of the activity of amylase induced by SNP in embryoless half-seeds of wheat in the beginning period of germination (6 h) might be indirectly related to GA(3). 展开更多
关键词 nitric oxide (NO) wheat seed germination osmotic stress storage reserve degradation reactive oxygen species metabolism gibberellin (GA(3))
下载PDF
Influences of Na_2CO_3 Stress on Physiological Metabolisms of Different Alkali Tolerant Varieties of Stevia rebaudiana 被引量:1
2
作者 绳仁立 原海燕 黄苏珍 《Agricultural Science & Technology》 CAS 2011年第12期1837-1841,共5页
[Objective] The research aimed to reveal physiological mechanisms of alkali tolerances of different Stevia rebaudiana varieties under alkali stress.[Method] By using matrix culture method,the influences of Na2CO3 on c... [Objective] The research aimed to reveal physiological mechanisms of alkali tolerances of different Stevia rebaudiana varieties under alkali stress.[Method] By using matrix culture method,the influences of Na2CO3 on chlorophyll content,malondialdehyde(MDA),superoxide dismutase(SOD),peroxidase(POD) and Proline(Pro) content of leaves from different alkali tolerance varieties of S.rebaudiana [No.2 Shoutian(relative alkali tolerance variety) and No.4 Zhongshan(alkali sensitivity variety)] were studied.[Result] 1.2 g/L of Na2CO3 stress made that the chlorophyll contents of leaves from No.2 Shoutian and No.4 Zhongshan seedlings both decreased in different degrees.Moreover,MDA content of No.4 Zhongshan was higher than control during the whole stress period,and the largest increase amplitude was 43.2%.MDA content of No.2 Shoutian was lower than control in early and latter periods of stress,and increased the maximum on the 14th day of alkali stress,which was 24.4% higher than control.SOD activities of No.2 Shoutian and No.4 Zhongshan both showed a trend of first increasing and declining then in the alkali stress period,but the increasing extent of SOD activity in No.2 Shoutian was higher than that in No.4 Zhongshan.In latter period of Na2CO3 stress,SOD activity of No.2 Shoutian declined,but POD activity was higher than that of No.4 Zhongshan.It illustrated that POD had stronger scavenging capability of active oxygen.Pro contents of No.2 Shoutian and No.4 Zhongshan were higher than control in the stress period.It showed that the osmoregulation of Pro might not be key regulatory factor of alkali tolerance difference of the two S.rebaudiana varieties.[Conclusion] The research not only provided theoretical basis for further breeding new salt tolerance variety of S.rebaudiana,but also had important significance for improving utilized ratio of kaline soil and growing environment for mudflat in China. 展开更多
关键词 S.rebaudiana Na2CO3 stress Physiological metabolism
下载PDF
Systematic analyses of glutamine and glutamate metabolisms across different cancer types 被引量:5
3
作者 Yuan Tian Wei Du +4 位作者 Sha Cao Yue Wu Ning Dong Yan Wang Ying Xu 《Chinese Journal of Cancer》 SCIE CAS CSCD 2017年第12期712-725,共14页
Background: Glutamine and glutamate are known to play important roles in cancer biology. However, no detailed information is available in terms of their levels of involvement in various biological processes across dif... Background: Glutamine and glutamate are known to play important roles in cancer biology. However, no detailed information is available in terms of their levels of involvement in various biological processes across different cancer types, whereas such knowledge could be critical for understanding the distinct characteristics of different cancer types. Our computational study aimed to examine the functional roles of glutamine and glutamate across different cancer types.Methods: We conducted a comparative analysis of gene expression data of cancer tissues versus normal control tissues of 11 cancer types to understand glutamine and glutamate metabolisms in cancer. Specifically, we developed a linear regression model to assess differential contributions by glutamine and/or glutamate to each of seven biological processes in cancer versus control tissues.Results: While our computational predictions were consistent with some of the previous observations, multiple novel predictions were made:(1) glutamine is generally not involved in purine synthesis in cancer except for breast cancer, and is similarly not involved in pyridine synthesis except for kidney cancer;(2) glutamine is generally not involved in ATP production in cancer;(3) glutamine's contribution to nucleotide synthesis is minimal if any in cancer;(4) glutamine is not involved in asparagine synthesis in cancer except for bladder and lung cancers; and(5) glutamate does not contribute to serine synthesis except for bladder cancer.Conclusions: We comprehensively predicted the roles of glutamine and glutamate metabolisms in selected metabolic pathways in cancer tissues versus control tissues, which may lead to novel approaches to therapeutic development targeted at glutamine and/or glutamate metabolism. However, our predictions need further functional validation. 展开更多
关键词 GLUTAMINE METABOLISM Glutamate METABOLISM Nucleotide SYNTHESIS Lipid SYNTHESIS URIDINE diphosphate N-ACETYLGLUCOSAMINE (UDP-GlcNAc) METABOLISM
下载PDF
Weakened carbon and nitrogen metabolisms under post-silking heat stress reduce the yield and dry matter accumulation in waxy maize 被引量:9
4
作者 YANG Huan GU Xiao-tian +2 位作者 DING Meng-qiu LU Wei-ping LU Da-lei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第1期78-88,共11页
Post-silking high temperature is one of the abiotic factors that affects waxy maize(Zea mays L. sinensis Kulesh) growth in southern China. We conducted a pot trial in 2016–2017 to study the effects of post-silking da... Post-silking high temperature is one of the abiotic factors that affects waxy maize(Zea mays L. sinensis Kulesh) growth in southern China. We conducted a pot trial in 2016–2017 to study the effects of post-silking daytime heat stress(35°C) on the activities of enzymes involved in leaf carbon and nitrogen metabolisms and leaf reactive oxygen species(ROS) and water contents. This study could improve our understanding on dry matter accumulation and translocation and grain yield production. Results indicated that decreased grain number and weight under heat stress led to yield loss, which decreased by 20.8 and 20.0% in 2016 and 2017, respectively. High temperature reduced post-silking dry matter accumulation(16.1 and 29.5% in 2016 and 2017, respectively) and promoted translocation of pre-silking photoassimilates stored in vegetative organs, especially in leaf. The lower leaf water content and chlorophyll SPAD value, and higher ROS(H2O2 and O2^-·) content under heat stress conditions indicated accelerated senescent rate. The weak activities of phosphoenolpyruvate carboxylase(PEPCase), Ribulose-1,5-bisphosphate carboxylase(Ru BPCase), nitrate reductase(NR), and glutamine synthase(GS) indicated that leaf carbon and nitrogen metabolisms were suppressed when the plants suffered from a high temperature during grain filling. Correlation analysis results indicated that the reduced grain yield was mainly caused by the decreased leaf water content, weakened NR activity, and increased H2O2 content. The increased accumulation of grain weight and post-silking dry matter and the reduced translocation amount in leaf was mainly due to the increased chlorophyll SPAD value and NR activity. Reduced PEPCase and Ru BPCase activities did not affect dry matter accumulation and translocation and grain yield. In conclusion, post-silking heat stress down-regulated the leaf NR and GS activities, increased the leafwater loss rate, increased ROS generation, and induced pre-silking carbohydrate translocation. However, it reduced the post-silking direct photoassimilate deposition, ultimately, leading to grain yield loss. 展开更多
关键词 waxy maize heat stress nitrogen metabolism photosynthetic enzymes SENESCENCE dry matter
下载PDF
Manipulated precipitation regulated carbon and phosphorus limitations of microbial metabolisms in a temperate grassland on the Loess Plateau,China
5
作者 HAI Xuying LI Jiwei +4 位作者 LIU Yulin WU Jianzhao LI Jianping SHANGGUAN Zhouping DENG Lei 《Journal of Arid Land》 SCIE CSCD 2022年第10期1109-1123,共15页
Manipulated precipitation patterns can profoundly influence the metabolism of soil microorganisms.However,the responses of soil organic carbon(SOC)and nutrient turnover to microbial metabolic limitation under changing... Manipulated precipitation patterns can profoundly influence the metabolism of soil microorganisms.However,the responses of soil organic carbon(SOC)and nutrient turnover to microbial metabolic limitation under changing precipitation conditions remain unclear in semi-arid ecosystems.This study measured the potential activities of enzymes associated with carbon(C:β-1,4-glucosidase(BG)andβ-D-cellobiosidase(CBH)),nitrogen(N:β-1,4-N-acetylglucosaminidase(NAG)and L-leucine aminopeptidase(LAP))and phosphorus(P:alkaline phosphatase(AP))acquisition,to quantify soil microbial metabolic limitations using enzymatic stoichiometry,and then identify the implications for soil microbial metabolic limitations and carbon use efficiency(CUE)under decreased precipitation by 50%(DP)and increased precipitation by 50%(IP)in a temperate grassland.The results showed that soil C and P were the major elements limiting soil microbial metabolism in temperate grasslands.There was a strong positive dependence between microbial C and P limitations under manipulated precipitation.Microbial metabolism limitation was promoted by DP treatment but reversed by IP treatment.Moreover,CUE was inhibited by DP treatment but promoted by IP treatment.Soil microbial metabolism limitation was mainly regulated by soil moisture and soil C,N,and P stoichiometry,followed by available nutrients(i.e.,NO^(-)_(3),NH^(+)_(4),and dissolved organic C)and microbial biomass(i.e.,MBC and MBN).Overall,these findings highlight the potential role of changing precipitation in regulating ecosystem C turnover by limiting microbial metabolism and CUE in temperate grassland ecosystems. 展开更多
关键词 carbon use efficiency ecoenzymatic stoichiometry microbial metabolic limitations semi-arid ecosystems soil organic carbon
下载PDF
Chlorogenic acid modulates glucose and lipid metabolisms via AMPK activation in HepG2 cells and shows its anti-hyperglycemic effect on streptozocin-induced diabetic mice
6
作者 Hong-Ji Yao Zhao-Yi Xue +6 位作者 Rui-Qi Wang Cheng-Zuo Jiang Jing-Yan Xiong Zhi-Xuan Xia Qiang Liu Qi-Bing Li Yong Zhang 《Journal of Hainan Medical University》 2022年第9期14-21,共8页
Objective:In this study,we focus on the hypoglycemic effects of chlorogenic acid(CGA)in vitro and in vivo and its mechanism base on regulate glucose and lipid metabolism via AMPK activation.Methods:The cytotoxicity,gl... Objective:In this study,we focus on the hypoglycemic effects of chlorogenic acid(CGA)in vitro and in vivo and its mechanism base on regulate glucose and lipid metabolism via AMPK activation.Methods:The cytotoxicity,glucose consumption and intracellular triglyceride assay were been detected by commercial kits.The western blots were used to detection the associated protein levels after CGA treatment,and the inhibiter blocking experiments were also be done.In vivo experiment,the fasting blood-glucose,lipid metabolism,liver function,insulin resistance,glucose tolerance,and pathological change were assessed on streptozocin induced diabetic mice.Results:We found that CGA exhibited no cytotoxicity at concentrations of 100μM,it caused a significant increasing of glucose consumption and reducing of the PA-BSA induced intracellular TG level on HepG2 cells at 50μM and 100μM treatment,CGA exhibited up-regulating the level of p-AMPK(Thr172)and p-ACC(Ser79)in dose-dependent manners in vitro and in vivo.The stimulating activities of CGA on AMPK were completely blocked by compound c(CC)on HepG2 cells.And the efficacies of CGA on glucose consumption and intracellular TG accumulation were also completely blocked by CC pretreatment.The CGA also exhibited potent anti-diabetic effects with hypoglycemic activity,improve insulin resistance and glucose tolerance,regulate glucose and lipid metabolism and protect the liver function in vivo.Conclusion:Our results suggested that CGA can regulate glucose and lipid metabolism by AMPK activation,and exhibit potent anti-hyperglycemic effect in streptozocin induced diabetes mice,and may be used as a potential effective anti-diabetes drug. 展开更多
关键词 Chlorogenic acid Glucose and lipid metabolism Anti-diabetes activity AMPK
下载PDF
Cell metabolism pathways involved in the pathophysiological changes of diabetic peripheral neuropathy 被引量:5
7
作者 Yaowei Lv Xiangyun Yao +3 位作者 Xiao Li Yuanming Ouyang Cunyi Fan Yun Qian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期598-605,共8页
Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diab... Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diabetic peripheral neuropathy expose the urgent need for cell metabolism research.Given the lack of comprehensive understanding of energy metabolism changes and related signaling pathways in diabetic peripheral neuropathy,it is essential to explore energy changes and metabolic changes in diabetic peripheral neuropathy to develop suitable treatment methods.This review summarizes the pathophysiological mechanism of diabetic peripheral neuropathy from the perspective of cellular metabolism and the specific interventions for different metabolic pathways to develop effective treatment methods.Various metabolic mechanisms(e.g.,polyol,hexosamine,protein kinase C pathway)are associated with diabetic peripheral neuropathy,and researchers are looking for more effective treatments through these pathways. 展开更多
关键词 cell metabolism diabetic peripheral neuropathy peripheral nerve injury protein kinase C pathway reactive oxygen species.
下载PDF
Cumulative effects of excess high-normal alanine aminotransferase levels in relation to new-onset metabolic dysfunction-associated fatty liver disease in China 被引量:6
8
作者 Jing-Feng Chen Zhuo-Qing Wu +5 位作者 Hao-Shuang Liu Su Yan You-Xiang Wang Miao Xing Xiao-Qin Song Su-Ying Ding 《World Journal of Gastroenterology》 SCIE CAS 2024年第10期1346-1357,共12页
BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations ... BACKGROUND Within the normal range,elevated alanine aminotransferase(ALT)levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease(MAFLD).AIM To investigate the associations between repeated high-normal ALT measurements and the risk of new-onset MAFLD prospectively.METHODS A cohort of 3553 participants followed for four consecutive health examinations over 4 years was selected.The incidence rate,cumulative times,and equally and unequally weighted cumulative effects of excess high-normal ALT levels(ehALT)were measured.Cox proportional hazards regression was used to analyse the association between the cumulative effects of ehALT and the risk of new-onset MAFLD.RESULTS A total of 83.13%of participants with MAFLD had normal ALT levels.The incidence rate of MAFLD showed a linear increasing trend in the cumulative ehALT group.Compared with those in the low-normal ALT group,the multivariate adjusted hazard ratios of the equally and unequally weighted cumulative effects of ehALT were 1.651[95%confidence interval(CI):1.199-2.273]and 1.535(95%CI:1.119-2.106)in the third quartile and 1.616(95%CI:1.162-2.246)and 1.580(95%CI:1.155-2.162)in the fourth quartile,respectively.CONCLUSION Most participants with MAFLD had normal ALT levels.Long-term high-normal ALT levels were associated with a cumulative increased risk of new-onset MAFLD. 展开更多
关键词 Metabolic dysfunction-associated fatty liver disease High-normal alanine aminotransferase level Cumulative effect Cox proportional hazards regression Cohort study
下载PDF
Lactate metabolism in neurodegenerative diseases 被引量:3
9
作者 Chaoguang Yang Rui-Yuan Pan +1 位作者 Fangxia Guan Zengqiang Yuan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期69-74,共6页
Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signalin... Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research. 展开更多
关键词 Alzheimer's disease Astrocyte-Neuron Lactate Shuttle brain central nervous system glucose metabolism GLYCOLYSIS NEUROINFLAMMATION Parkinson's disease protein lactylation signaling molecule
下载PDF
Succinylation modification:a potential therapeutic target in stroke 被引量:2
10
作者 Jie Lian Wenwu Liu +1 位作者 Qin Hu Xiaohua Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期781-787,共7页
Stroke is a leading cause of mortality and disability worldwide.Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of strokeinduced brain injury.Imp... Stroke is a leading cause of mortality and disability worldwide.Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of strokeinduced brain injury.Impaired mitochondrial energy metabolism is observed minutes after stroke and is closely associated with the progression of neuropathology.Recently,a new type of posttranslational modification,known as lysine succinylation,has been recognized to play a significant role in mitochondrial energy metabolism after ischemia.However,the role of succinylation modification in cell metabolism after stroke and its regulation are not well understood.We aimed to review the effects of succinylation on energy metabolism,reactive oxygen species generation,and neuroinflammation,as well as Sirtuin 5 mediated desuccinylation after stroke.We also highlight the potential of targeting succinylation/desuccinylation as a promising strategy for the treatment of stroke.The succinylation level is dynamically regulated by the nonenzymatic or enzymatic transfer of a succinyl group to a protein on lysine residues and the removal of succinyl catalyzed by desuccinylases.Mounting evidence has suggested that succinylation can regulate the metabolic pathway through modulating the activity or stability of metabolic enzymes.Sirtuins,especially Sirtuin 5,are characterized for their desuccinylation activity and have been recognized as a critical regulator of metabolism through desuccinylating numerous metabolic enzymes.Imbalance between succinylation and desuccinylation has been implicated in the pathophysiology of stroke.Pharmacological agents that enhance the activity of Sirtuin 5 have been employed to promote desuccinylation and improve mitochondrial metabolism,and neuroprotective effects of these agents have been observed in experimental stroke studies.However,their therapeutic efficacy in stroke patients should be validated. 展开更多
关键词 mitochondria metabolism NEUROPROTECTION sirtuin 5 STROKE succinylation modification
下载PDF
Copper Metabolism and Cuproptosis:Molecular Mechanisms and Therapeutic Perspectives in Neurodegenerative Diseases 被引量:2
11
作者 Xiao-xia BAN Hao WAN +7 位作者 Xin-xing WAN Ya-ting TAN Xi-min HU Hong-xia BAN Xin-yu CHEN Kun HUANG Qi ZHANG Kun XIONG 《Current Medical Science》 SCIE CAS 2024年第1期28-50,共23页
Copper is an essential trace element,and plays a vital role in numerous physiological processes within the human body.During normal metabolism,the human body maintains copper homeostasis.Copper deficiency or excess ca... Copper is an essential trace element,and plays a vital role in numerous physiological processes within the human body.During normal metabolism,the human body maintains copper homeostasis.Copper deficiency or excess can adversely affect cellular function.Therefore,copper homeostasis is stringently regulated.Recent studies suggest that copper can trigger a specific form of cell death,namely,cuproptosis,which is triggered by excessive levels of intracellular copper.Cuproptosis induces the aggregation of mitochondrial lipoylated proteins,and the loss of iron-sulfur cluster proteins.In neurodegenerative diseases,the pathogenesis and progression of neurological disorders are linked to copper homeostasis.This review summarizes the advances in copper homeostasis and cuproptosis in the nervous system and neurodegenerative diseases.This offers research perspectives that provide new insights into the targeted treatment of neurodegenerative diseases based on cuproptosis. 展开更多
关键词 cuproptosis copper metabolism copper homeostasis NEURODEGENERATION neurodegenerativedisease
下载PDF
Metabolic disease and the liver: A review 被引量:3
12
作者 Márcia Vargas Sheila de Castro Cardoso Toniasso +6 位作者 Patricia G Riedel Camila Pereira Baldin Francielle Lopes dos Reis Robson Martins Pereira Maria Carlota Borba Brum Dvora Joveleviths Mario Reis Alvares-da-Silva 《World Journal of Hepatology》 2024年第1期33-40,共8页
Metabolic dysfunction-associated steatotic liver disease(MASLD)is the most common liver disease worldwide,with an estimated prevalence of 31%in Latin America.The presence of metabolic comorbidities coexisting with liv... Metabolic dysfunction-associated steatotic liver disease(MASLD)is the most common liver disease worldwide,with an estimated prevalence of 31%in Latin America.The presence of metabolic comorbidities coexisting with liver disease varies substantially among populations.It is acknowledged that obesity is boosting the type 2 diabetes mellitus“epidemic,”and both conditions are significant contributors to the increasing number of patients with MASLD.Nonalcoholic steatohepatitis represents a condition of chronic liver inflammation and is considered the most severe form of MASLD.MASLD diagnosis is based on the presence of steatosis,noninvasive scores and altered liver tests.Noninvasive scores of liver fibrosis,such as serum biomarkers,which should be used in primary care to rule out advanced fibrosis,are simple,inexpensive,and widely available.Currently,guidelines from international hepatology societies recommend using noninvasive strategies to simplify case finding and management of high-risk patients with MASLD in clinical practice.Unfortunately,there is no definite pharmacological treatment for the condition.Creating public health policies to treat patients with risk factors for MASLD prevention is essential. 展开更多
关键词 Nonalcoholic fatty liver disease Primary care Metabolic risk LIVER METABOLISM
下载PDF
Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism 被引量:3
13
作者 Jie Li Wen Jiang +9 位作者 Yuefang Cai Zhenqiu Ning Yingying Zhou Chengyi Wang Sookja Ki Chung Yan Huang Jingbo Sun Minzhen Deng Lihua Zhou Xiao Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期650-656,共7页
Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However... Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction. 展开更多
关键词 astrocytic endothelin-1 dentate gyrus differentially expressed proteins HIPPOCAMPUS ischemic stroke learning and memory deficits lipid metabolism neural stem cells NEUROGENESIS proliferation
下载PDF
Latest assessment methods for mitochondrial homeostasis in cognitive diseases 被引量:2
14
作者 Wei You Yue Li +4 位作者 Kaixi Liu Xinning Mi Yitong Li Xiangyang Guo Zhengqian Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期754-768,共15页
Mitochondria play an essential role in neural function,such as supporting normal energy metabolism,regulating reactive oxygen species,buffering physiological calcium loads,and maintaining the balance of morphology,sub... Mitochondria play an essential role in neural function,such as supporting normal energy metabolism,regulating reactive oxygen species,buffering physiological calcium loads,and maintaining the balance of morphology,subcellular distribution,and overall health through mitochondrial dynamics.Given the recent technological advances in the assessment of mitochondrial structure and functions,mitochondrial dysfunction has been regarded as the early and key pathophysiological mechanism of cognitive disorders such as Alzheimer’s disease,Parkinson’s disease,Huntington’s disease,mild cognitive impairment,and postoperative cognitive dysfunction.This review will focus on the recent advances in mitochondrial medicine and research methodology in the field of cognitive sciences,from the perspectives of energy metabolism,oxidative stress,calcium homeostasis,and mitochondrial dynamics(including fission-fusion,transport,and mitophagy). 展开更多
关键词 cognitive disorders mitochondrial dysfunction mitochondrial energy metabolism mitochondrial dynamics mitochondrial transport MITOPHAGY mitochondrial biogenesis oxidative stress calcium homeostasis
下载PDF
Isoform-and cell-state-specific APOE homeostasis and function 被引量:2
15
作者 Karina Lindner Anne-Claude Gavin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2456-2466,共11页
Apolipoprotein E is the major lipid transporter in the brain and an important player in neuron-astrocyte metabolic coupling.It ensures the survival of neurons under stressful conditions and hyperactivity by nourishing... Apolipoprotein E is the major lipid transporter in the brain and an important player in neuron-astrocyte metabolic coupling.It ensures the survival of neurons under stressful conditions and hyperactivity by nourishing and detoxifying them.Apolipoprotein E polymorphism,combined with environmental stresses and/or age-related alterations,influences the risk of developing late-onset Alzheimer’s disease.In this review,we discuss our current knowledge of how apolipoprotein E homeostasis,i.e.its synthesis,secretion,degradation,and lipidation,is affected in Alzheimer’s disease. 展开更多
关键词 Alzheimer’s disease apolipoprotein E autophagy CHOLESTEROL lipid detoxification lipid transport lysosomal failure metabolic impairment TRIACYLGLYCEROL
下载PDF
Role of gut-liver axis and glucagon-like peptide-1 receptor agonists in the treatment of metabolic dysfunction-associated fatty liver disease 被引量:1
16
作者 Jakub Rochoń Piotr Kalinowski +1 位作者 Ksenia Szymanek-Majchrzak MichałGrąt 《World Journal of Gastroenterology》 SCIE CAS 2024年第23期2964-2980,共17页
Metabolic dysfunction-associated fatty liver disease(MAFLD)is a hepatic manifestation of the metabolic syndrome.It is one of the most common liver diseases worldwide and shows increasing prevalence rates in most count... Metabolic dysfunction-associated fatty liver disease(MAFLD)is a hepatic manifestation of the metabolic syndrome.It is one of the most common liver diseases worldwide and shows increasing prevalence rates in most countries.MAFLD is a progressive disease with the most severe cases presenting as advanced fibrosis or cirrhosis with an increased risk of hepatocellular carcinoma.Gut microbiota play a significant role in the pathogenesis and progression of MAFLD by disrupting the gut-liver axis.The mechanisms involved in maintaining gut-liver axis homeostasis are complex.One critical aspect involves preserving an appropriate intestinal barrier permeability and levels of intestinal lumen metabolites to ensure gutliver axis functionality.An increase in intestinal barrier permeability induces metabolic endotoxemia that leads to steatohepatitis.Moreover,alterations in the absorption of various metabolites can affect liver metabolism and induce liver steatosis and fibrosis.Glucagon-like peptide-1 receptor agonists(GLP-1 RAs)are a class of drugs developed for the treatment of type 2 diabetes mellitus.They are also commonly used to combat obesity and have been proven to be effective in reversing hepatic steatosis.The mechanisms reported to be involved in this effect include an improved regulation of glycemia,reduced lipid synthesis,β-oxidation of free fatty acids,and induction of autophagy in hepatic cells.Recently,multiple peptide receptor agonists have been introduced and are expected to increase the effectiveness of the treatment.A modulation of gut microbiota has also been observed with the use of these drugs that may contribute to the amelioration of MAFLD.This review presents the current understanding of the role of the gutliver axis in the development of MAFLD and use of members of the GLP-1 RA family as pleiotropic agents in the treatment of MAFLD. 展开更多
关键词 Metabolic dysfunction-associated fatty liver disease Metabolic dysfunction-associated steatohepatitis Nonalcoholic fatty liver disease Non-alcoholic steatohepatitis Metabolic syndrome Obesity Gastrointestinal microbiota Glucagon-like peptide-1 Glucagon-like peptide-2 Bariatric surgery
下载PDF
Global research trends and prospects of cellular metabolism in colorectal cancer 被引量:1
17
作者 Yan-Chen Liu Zhi-Cheng Gong +3 位作者 Chao-Qun Li Peng Teng Yan-Yan Chen Zhao-Hui Huang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第2期527-542,共16页
BACKGROUND An increasing number of studies have focused on the role of cellular metabolism in the development of colorectal cancer(CRC).However,no work is currently available to synthesize the field through bibliometr... BACKGROUND An increasing number of studies have focused on the role of cellular metabolism in the development of colorectal cancer(CRC).However,no work is currently available to synthesize the field through bibliometrics.AIM To analyze the development in the field of“glucose metabolism”(GM),“amino acid metabolism”(AM),“lipid metabolism”(LM),and“nucleotide metabolism”(NM)in CRC by visualization.METHODS Articles within the abovementioned areas of GM,AM,LM and NM in CRC,which were published from January 1,1991,to December 31,2022,are retrieved from the Web of Science Core Collection and analyzed by CiteSpace 6.2.R4 and VOSviewer 1.6.19.RESULTS The field of LM in CRC presented the largest number of annual publications and the fastest increase in the last decade compared with the other three fields.Meanwhile,China and the United States were two of the most prominent contri-butors in these four areas.In addition,Gang Wang,Wei Jia,Maria Notar-nicola,and Cornelia Ulrich ranked first in publication numbers,while Jing-Yuan Fang,Senji Hirasawa,Wei Jia,and Charles Fuchs were the most cited authors on average in these four fields,respectively.“Gut microbiota”and“epithelial-mesenchymal transition”emerged as the newest burst words in GM,“gut microbiota”was the latest outburst word in AM,“metastasis”,“tumor microenvironment”,“fatty acid metabolism”,and“metabolic reprogramming”were the up-to-date outbreaking words in LM,while“epithelial-mesenchymal transition”and“apoptosis”were the most recently occurring words in NM.CONCLUSION Research in“cellular metabolism in CRC”is all the rage at the moment,and researchers are particularly interested in exploring the mechanism to explain the metabolic alterations in CRC.Targeting metabolic vulnerability appears to be a promising direction in CRC therapy. 展开更多
关键词 Cellular metabolism Colorectal cancer Glucose metabolism Amino acid metabolism Lipid metabolism Nucleotide metabolism
下载PDF
Lipid metabolism-related long noncoding RNA RP11-817I4.1 promotes fatty acid synthesis and tumor progression in hepatocellular carcinoma 被引量:1
18
作者 Ren-Yong Wang Jia-Ling Yang +5 位作者 Ning Xu Jia Xu Shao-Hua Yang Dao-Ming Liang Jin-Ze Li Hong Zhu 《World Journal of Gastroenterology》 SCIE CAS 2024年第8期919-942,共24页
BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of tumors.The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies.AIM To establish an H... BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of tumors.The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies.AIM To establish an HCC prognostic model for lipid metabolism-related long non-coding RNAs(LMR-lncRNAs)and conduct in-depth research on the specific role of novel LMR-lncRNAs in HCC.METHODS Correlation and differential expression analyses of The Cancer Genome Atlas data were used to identify differentially expressed LMR-lncRNAs.Quantitative real-time polymerase chain reaction analysis was used to evaluate the expression of LMR-lncRNAs.Nile red staining was employed to observe intracellular lipid levels.The interaction between RP11-817I4.1,miR-3120-3p,and ATP citrate lyase(ACLY)was validated through the performance of dual-luciferase reporter gene and RIP assays.RESULTS Three LMR-lncRNAs(negative regulator of antiviral response,RNA transmembrane and coiled-coil domain family 1 antisense RNA 1,and RP11-817I4.1)were identified as predictive markers for HCC patients and were utilized in the construction of risk models.Additionally,proliferation,migration,and invasion were reduced by RP11-817I4.1 knockdown.An increase in lipid levels in HCC cells was significantly induced by RP11-817I4.1 through the miR-3120-3p/ACLY axis.CONCLUSION LMR-lncRNAs have the capacity to predict the clinical characteristics and prognoses of HCC patients,and the discovery of a novel LMR-lncRNAs,RP11-817I4.1,revealed its role in promoting lipid accumulation,thereby accelerating the onset and progression of HCC. 展开更多
关键词 Hepatocellular carcinoma Lipid metabolism Immune microenvironment Prognostic markers Metabolic reprogramming
下载PDF
Metabolic dysfunction-associated steatotic liver disease:Navigating terminological evolution,diagnostic frontiers and therapeutic horizon-an editorial exploration 被引量:1
19
作者 Aleksandra Boldys Lukasz Buldak 《World Journal of Gastroenterology》 SCIE CAS 2024年第18期2387-2390,共4页
Metabolic dysfunction-associated steatotic liver disease(MASLD),once known as non-alcoholic fatty liver disease(NAFLD),represents a spectrum of liver disorders characterized by lipid accumulation within hepatocytes.Th... Metabolic dysfunction-associated steatotic liver disease(MASLD),once known as non-alcoholic fatty liver disease(NAFLD),represents a spectrum of liver disorders characterized by lipid accumulation within hepatocytes.The redefinition of NAFLD in 2023 marked a significant reposition in terminology,emphasizing a broader understanding of liver steatosis and its associated risks.MASLD is now recognized as a major risk factor for liver cirrhosis,hepatocellular carcinoma,and systemic complications such as cardiovascular diseases or systemic inflammation.Diagnostic challenges arise,particularly in identifying MASLD in lean individuals,necessitating updated diagnostic protocols and investing in non-invasive diagnostic tools.Therapeutically,there is an urgent need for effective treatments targeting MASLD,with emerging pharmacological options focusing on,among others,carbohydrate and lipid metabolism.Additionally,understanding the roles of bile acid metabolism,the microbiome,and dietary interventions in MASLD pathogenesis and management holds promise for innovative therapeutic approaches.There is a strong need to emphasize the importance of collaborative efforts in understanding,diagnosing,and managing MASLD to improve physicians’approaches and patient outcomes. 展开更多
关键词 Metabolic dysfunction-associated steatotic liver disease Diagnostics Pathophysiology of metabolic dysfunction-associated steatotic liver disease Therapy of metabolic dysfunction-associated steatotic liver disease Therapeutic innovations
下载PDF
Cerebral and muscle tissue oxygenation during exercise in healthy adults: A systematic review 被引量:1
20
作者 Diego Orcioli-Silva Victor Spiandor Beretta +5 位作者 Paulo Cezar Rocha Santos Felipe Marroni Rasteiro Anita Brum Marostegan Rodrigo Vitorio Claudio Alexandre Gobatto Fulvia Barros Manchado-Gobatto 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第4期459-471,F0003,共14页
Background:Near-infrared spectroscopy(NIRS)technology has allowed for the measurement of cerebral and skeletal muscle oxygenation simultaneously during exercise.Since this technology has been growing and is now succes... Background:Near-infrared spectroscopy(NIRS)technology has allowed for the measurement of cerebral and skeletal muscle oxygenation simultaneously during exercise.Since this technology has been growing and is now successfully used in laboratory and sports settings,this systematic review aimed to synthesize the evidence and enhance an integrative understanding of bloodflow adjustments and oxygen(O_(2))changes(i.e.,the balance between O_(2) delivery and O_(2) consumption)within the cerebral and muscle systems during exercise.Methods:A systematic review was conducted using PubMed,Embase,Scopus,and Web of Science databases to search for relevant studies that simultaneously investigated cerebral and muscle hemodynamic changes using the near-infrared spectroscopy system during exercise.This review considered manuscripts written in English and available before February 9,2023.Each step of screening involved evaluation by 2 inde-pendent authors,with disagreements resolved by a third author.The Joanna Briggs Institute Critical Appraisal Checklist was used to assess the methodological quality of the studies.Results:Twenty studies were included,of which 80%had good methodological quality,and involved 290 young or middle-aged adults.Different types of exercises were used to assess cerebral and muscle hemodynamic changes,such as cycling(n=11),treadmill(n=1),knee extension(n=5),isometric contraction of biceps brachii(n=3),and duet swim routines(n=1).The cerebral hemodynamics anal-ysis was focused on the frontal cortex(n=20),while in the muscle,the analysis involved vastus lateralis(n=18),gastrocnemius(n=3),biceps brachii(n=5),deltoid(n=1),and intercostal muscle(n=1).Overall,muscle deoxygenation increases during exercise,reaching a plateau in voluntary exhaustion,while in the brain,oxyhemoglobin concentration increases with exercise intensity,reaching a plateau or declining at the exhaustion point.Conclusion:Muscle and cerebral oxygenation respond differently to exercise,with muscle increasing O_(2) utilization and cerebral tissue increasing O_(2) delivery during exercise.However,at the exhaustion point,both muscle and cerebral oxygenation become compromised.This is characterized by a reduction in bloodflow and a decrease in O_(2) extraction in the muscle,while in the brain,oxygenation reaches a plateau or decline,potentially resulting in motor failure during exercise. 展开更多
关键词 Near-infrared spectroscopy HEMODYNAMIC Blood flow BRAIN Muscle metabolism
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部