期刊文献+
共找到56,671篇文章
< 1 2 250 >
每页显示 20 50 100
Comprehensive analysis of the gut microbiome and posttranslational modifications elucidates the route involved in microbiota-host interactions 被引量:1
1
作者 Hai-Yang Wang Lan-Xiang Liu +8 位作者 Xue-Yi Chen Yang-Dong Zhang Wen-Xia Li Wen-Wen Li Lian Wang Xiao-Long Mo Hong Wei Ping Ji Peng Xie 《Zoological Research》 SCIE CSCD 2024年第1期95-107,共13页
The gut microbiome interacts with the host to maintain body homeostasis,with gut microbial dysbiosis implicated in many diseases.However,the underlying mechanisms of gut microbe regulation of host behavior and brain f... The gut microbiome interacts with the host to maintain body homeostasis,with gut microbial dysbiosis implicated in many diseases.However,the underlying mechanisms of gut microbe regulation of host behavior and brain functions remain unclear.This study aimed to elucidate the influence of gut microbiota on brain functions via post-translational modification mechanisms in the presence or absence of bacteria without any stimulation.We conducted succinylome analysis of hippocampal proteins in germ-free(GF)and specific pathogen-free(SPF)mice and metagenomic analysis of feces from SPF mice.These results were integrated with previously reported hippocampal acetylome and phosphorylome data from the same batch of mice.Subsequent bioinformatics analyses revealed 584 succinylation sites on 455 proteins,including 54 up-regulated succinylation sites on 91 proteins and 99 down-regulated sites on 51 proteins in the GF mice compared to the SPF mice.We constructed a panoramic map of gut microbiota-regulated succinylation,acetylation,and phosphorylation,and identified cross-talk and relative independence between the different types of post-translational modifications in modulating complicated intracellular pathways.Pearson correlation analysis indicated that 13 taxa,predominantly belonging to the Bacteroidetes phylum,were correlated with the biological functions of post-translational modifications.Positive correlations between these taxa and succinylation and negative correlations between these taxa and acetylation were identified in the modulation of intracellular pathways.This study highlights the hippocampal physiological changes induced by the absence of gut microbiota,and proteomic quantification of succinylation,phosphorylation,and acetylation,contributing to our understanding of the role of the gut microbiome in brain function and behavioral phenotypes. 展开更多
关键词 Gut microbiota Hippocampal protein Post-translational modifications SUCCINYLATION ACETYLATION PHOSPHORYLATION
下载PDF
Systematic Analysis of Post-Translational Modifications for Increased Longevity of Biotherapeutic Proteins
2
作者 Justin Kim Karanveer Sadiora 《Computational Molecular Bioscience》 2024年第3期125-145,共21页
Protein-based therapeutics (PPTs) are drugs used to treat a variety of different conditions in the human body by alleviating enzymatic deficiencies, augmenting other proteins and drugs, modulating signal pathways, and... Protein-based therapeutics (PPTs) are drugs used to treat a variety of different conditions in the human body by alleviating enzymatic deficiencies, augmenting other proteins and drugs, modulating signal pathways, and more. However, many PPTs struggle from a short half-life due to degradation caused by irreversible protein aggregation in the bloodstream. Currently, the most researched strategies for improving the efficiency and longevity of PPTs are post-translational modifications (PTMs). The goal of our research was to determine which type of PTM increases longevity the most for each of three commonly-used therapeutic proteins by comparing the docking scores (DS) and binding free energies (BFE) from protein aggregation and reception simulations. DS and BFE values were used to create a quantitative index that outputs a relative number from −1 to 1 to show reduced performance, no change, or increased performance. Results showed that methylation was the most beneficial for insulin (p < 0.1) and human growth hormone (p < 0.0001), and both phosphorylation and methylation were somewhat optimal for erythropoietin (p < 0.1 and p < 0.0001, respectively). Acetylation consistently provided the worst benefits with the most negative indices, while methylation had the most positive indices throughout. However, PTM efficacy varied between PPTs, supporting previous studies regarding how each PTM can confer different benefits based on the unique structures of recipient proteins. 展开更多
关键词 Post-Translational modification Protein-Based Therapeutics Therapeutic Half-Life Protein Aggregation Protein Reception
下载PDF
Stem cell-based ischemic stroke therapy:Novel modifications and clinical challenges
3
作者 Yuankai Sun Xinchi Jiang Jianqing Gao 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第1期18-34,共17页
Ischemic stroke(IS)causes severe disability and high mortality worldwide.Stem cell(SC)therapy exhibits unique therapeutic potential for IS that differs from current treatments.SC’s cell homing,differentiation and par... Ischemic stroke(IS)causes severe disability and high mortality worldwide.Stem cell(SC)therapy exhibits unique therapeutic potential for IS that differs from current treatments.SC’s cell homing,differentiation and paracrine abilities give hope for neuroprotection.Recent studies on SC modification have enhanced therapeutic effects for IS,including gene transfection,nanoparticle modification,biomaterial modification and pretreatment.Thesemethods improve survival rate,homing,neural differentiation,and paracrine abilities in ischemic areas.However,many problems must be resolved before SC therapy can be clinically applied.These issues include production quality and quantity,stability during transportation and storage,as well as usage regulations.Herein,we reviewed the brief pathogenesis of IS,the“multi-mechanism”advantages of SCs for treating IS,various SC modification methods,and SC therapy challenges.We aim to uncover the potential and overcome the challenges of using SCs for treating IS and convey innovative ideas for modifying SCs. 展开更多
关键词 Ischemic stroke Stem cell therapy Stem cell modification Cell therapy challenge
下载PDF
Implications of electrode modifications in aqueous organic redox flow batteries
4
作者 Zahid Manzoor Bhat Mohammad Furquan +3 位作者 Muhammad Aurang Zeb Gul Sial Umair Alam Atif Saeed Alzahrani Mohammad Qamar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期499-510,I0011,共13页
Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making t... Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making them very viable contenders for large-scale grid storage applications.Considerable attention has been paid on the development of efficient redox-active molecules and their performance optimization through chemical substitutions at various places on the backbone as part of the pursuit for high-performance RFBs.Despite the fact that electrodes are vital to optimal performance,they have not garnered significant attention.Limited research has been conducted on the effects of electrode modifications to improve the performance of RFBs.The primary emphasis has been given on the impact of electrode engineering to augment the efficiency of aqueous organic RFBs.An overview of electron transfer at the electrode-electrolyte interface is provided.The implications of electrode modification on the performance of redox flow batteries,with a particular focus on the anodic and cathodic half-cells separately,are then discussed.In each section,significant discrepancies surrounding the effects of electrode engineering are thoroughly examined and discussed.Finally,we have presented a comprehensive assessment along with our perspectives on the future trajectory. 展开更多
关键词 Redox flow batteries Electrode modification Organic redox molecules Outer sphere and inner sphere
下载PDF
Variations of Atmospheric ELF/VLF Radio Noise Due to Seismogenic Modifications in Tropospheric Conductivity
5
作者 Masashi Hayakawa Alexander P. Nickolaenko 《Open Journal of Earthquake Research》 2024年第2期113-132,共20页
We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The ... We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The main idea is as follows. The distribution of the electric field around a thundercloud depends on the conductivity profile of the atmosphere. Quasi-static electric fields of a thundercloud decrease in those tropospheric regions where an increase of air conductivity is generated by pre-seismic activities due to emanation of radioactive gas and water into the lower atmosphere. The electric field becomes reduced in the lower troposphere, and the probability decreases of the cloud-to-ground (CG) strokes in such “contaminated” areas. Simultaneously, the electric field grows inside and above the thunderclouds, and hence, we anticipate a growth in the number of horizontal and tilted inter-cloud (or intra-cloud) (both termed as IC discharges) strokes. Spatial orientation of lightning strokes reduces vertical projection of their individual amplitudes, while the rate (median number strokes per a unit time) of discharges grows. We demonstrate that channel tilt of strokes modifies the spectral content of ELF/VLF radio noise and changes the rate of detected pulses during the earthquake preparation phase. 展开更多
关键词 ELF/VLF Radio Noise Earthquake Precursor Pre-Seismic modification Conductivity Anomaly in the Lower Atmosphere Radioactive Radon Gases CG Lightning Discharges IC Discharges Cloud-to-Ionosphere Discharge
下载PDF
Epigenetic modifications and metabolic memory in diabetic retinopathy:beyond the surface 被引量:2
6
作者 Dan-Dan Liu Chao-Yang Zhang +3 位作者 Jing-Ting Zhang Li-Min Gu Guo-Tong Xu Jing-Fa Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1441-1449,共9页
Epigenetics focuses on DNA methylation,histone modification,chromatin remodeling,noncoding RNAs,and other gene regulation mechanisms beyond the DNA sequence.In the past decade,epigenetic modifications have drawn more ... Epigenetics focuses on DNA methylation,histone modification,chromatin remodeling,noncoding RNAs,and other gene regulation mechanisms beyond the DNA sequence.In the past decade,epigenetic modifications have drawn more attention as they participate in the development and progression of diabetic retinopathy despite tight control of glucose levels.The underlying mechanisms of epigenetic modifications in diabetic retinopathy still urgently need to be elucidated.The diabetic condition facilitates epigenetic changes and influences target gene expression.In this review,we summarize the involvement of epigenetic modifications and metabolic memory in the development and progression of diabetic retinopathy and propose novel insights into the treatment of diabetic retinopathy. 展开更多
关键词 diabetic retinopathy DNA methylation EPIGENETICS histone modification metabolic memory M6A modification non-coding RNAs REVIEW
下载PDF
Succinylation modification:a potential therapeutic target in stroke 被引量:2
7
作者 Jie Lian Wenwu Liu +1 位作者 Qin Hu Xiaohua Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期781-787,共7页
Stroke is a leading cause of mortality and disability worldwide.Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of strokeinduced brain injury.Imp... Stroke is a leading cause of mortality and disability worldwide.Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of strokeinduced brain injury.Impaired mitochondrial energy metabolism is observed minutes after stroke and is closely associated with the progression of neuropathology.Recently,a new type of posttranslational modification,known as lysine succinylation,has been recognized to play a significant role in mitochondrial energy metabolism after ischemia.However,the role of succinylation modification in cell metabolism after stroke and its regulation are not well understood.We aimed to review the effects of succinylation on energy metabolism,reactive oxygen species generation,and neuroinflammation,as well as Sirtuin 5 mediated desuccinylation after stroke.We also highlight the potential of targeting succinylation/desuccinylation as a promising strategy for the treatment of stroke.The succinylation level is dynamically regulated by the nonenzymatic or enzymatic transfer of a succinyl group to a protein on lysine residues and the removal of succinyl catalyzed by desuccinylases.Mounting evidence has suggested that succinylation can regulate the metabolic pathway through modulating the activity or stability of metabolic enzymes.Sirtuins,especially Sirtuin 5,are characterized for their desuccinylation activity and have been recognized as a critical regulator of metabolism through desuccinylating numerous metabolic enzymes.Imbalance between succinylation and desuccinylation has been implicated in the pathophysiology of stroke.Pharmacological agents that enhance the activity of Sirtuin 5 have been employed to promote desuccinylation and improve mitochondrial metabolism,and neuroprotective effects of these agents have been observed in experimental stroke studies.However,their therapeutic efficacy in stroke patients should be validated. 展开更多
关键词 mitochondria metabolism NEUROPROTECTION sirtuin 5 STROKE succinylation modification
下载PDF
Successful lifestyle modifications may underlie umbilical cordmesenchymal stromal cell effects in type 2 diabetes mellitus 被引量:1
8
作者 Alexandra Papadopoulou Konstantinos I Papadopoulos 《World Journal of Diabetes》 SCIE 2023年第3期347-351,共5页
Type 2 diabetes mellitus(T2DM)is a lifelong condition and a grave threat to human health.Innovative efforts to relieve its detrimental effects are acutely needed.The sine qua non in T2DM management is consistent adher... Type 2 diabetes mellitus(T2DM)is a lifelong condition and a grave threat to human health.Innovative efforts to relieve its detrimental effects are acutely needed.The sine qua non in T2DM management is consistent adherence to a prudent lifestyle and nutrition,combined with aerobic and resistance exercise regimens,together repeatedly shown to lead to complete reversal and even longterm remission.Non-adherence to the above lifestyle adjustments condemns any treatment effort and ultimately the patient to a grim fate.It is thus imperative that every study evaluating the effects of innovative interventions in T2DM objectively compares the novel treatment modality to lifestyle modifications,preferably through double-blind controlled randomization,before claiming efficacy. 展开更多
关键词 Type 1 diabetes mellitus Type 2 diabetes mellitus Human umbilical cord mesenchymal stem cells Diabetes remission Diabetes reversal Lifestyle modifications
下载PDF
Genetically modified non-human primate models for research on neurodegenerative diseases 被引量:2
9
作者 Ming-Tian Pan Han Zhang +1 位作者 Xiao-Jiang Li Xiang-Yu Guo 《Zoological Research》 SCIE CSCD 2024年第2期263-274,共12页
Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(... Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(HD),and amyotrophic lateral sclerosis(ALS).Currently,there are no therapies available that can delay,stop,or reverse the pathological progression of NDs in clinical settings.As the population ages,NDs are imposing a huge burden on public health systems and affected families.Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments.While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms,the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap.Old World nonhuman primates(NHPs),such as rhesus,cynomolgus,and vervet monkeys,are phylogenetically,physiologically,biochemically,and behaviorally most relevant to humans.This is particularly evident in the similarity of the structure and function of their central nervous systems,rendering such species uniquely valuable for neuroscience research.Recently,the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms.This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained,as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis. 展开更多
关键词 NEURODEGENERATION Non-human primate Macaque monkey Animal model Gene modification
下载PDF
Dysregulation of RNA modification systems in clinical populations with neurocognitive disorders 被引量:4
10
作者 Helen M.Knight Merve DemirbugenÖz Adriana PerezGrovas-Saltijeral 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1256-1261,共6页
The study of modified RNA known as epitranscriptomics has become increasingly relevant in our understanding of disease-modifying mechanisms.Methylation of N6 adenosine(m^(6)A)and C5 cytosine(m^(5)C)bases occur on mRNA... The study of modified RNA known as epitranscriptomics has become increasingly relevant in our understanding of disease-modifying mechanisms.Methylation of N6 adenosine(m^(6)A)and C5 cytosine(m^(5)C)bases occur on mRNAs,tRNA,mt-tRNA,and rRNA species as well as non-coding RNAs.With emerging knowledge of RNA binding proteins that act as writer,reader,and eraser effector proteins,comes a new understanding of physiological processes controlled by these systems.Such processes when spatiotemporally disrupted within cellular nanodomains in highly specialized tissues such as the brain,give rise to different forms of disease.In this review,we discuss accumulating evidence that changes in the m^(6)A and m^(5)C methylation systems contribute to neurocognitive disorders.Early studies first identified mutations within FMR1 to cause intellectual disability Fragile X syndromes several years before FMR1 was identified as an m^(6)A RNA reader protein.Subsequently,familial mutations within the m^(6)A writer gene METTL5,m^(5)C writer genes NSUN2,NSUN3,NSUN5,and NSUN6,as well as THOC2 and THOC6 that form a protein complex with the m^(5)C reader protein ALYREF,were recognized to cause intellectual development disorders.Similarly,differences in expression of the m^(5)C writer and reader effector proteins,NSUN6,NSUN7,and ALYREF in brain tissue are indicated in individuals with Alzheimer's disease,individuals with a high neuropathological load or have suffered traumatic brain injury.Likewise,an abundance of m^(6)A reader and anti-reader proteins are reported to change across brain regions in Lewy bodies diseases,Alzheimer's disease,and individuals with high cognitive reserve.m^(6)A-modified RNAs are also reported significantly more abundant in dementia with Lewy bodies brain tissue but significantly reduced in Parkinson's disease tissue,whilst modified RNAs are misplaced within diseased cells,particularly where synapses are located.In parahippocampal brain tissue,m^(6)A modification is enriched in transcripts associated with psychiatric disorders including conditions with clear cognitive deficits.These findings indicate a diverse set of molecular mechanisms are influenced by RNA methylation systems that can cause neuronal and synaptic dysfunction underlying neurocognitive disorders.Targeting these RNA modification systems brings new prospects for neural regenerative therapies. 展开更多
关键词 5-methylcytosine methylation Alzheimer's disease cognitive diseases epitranscriptomics intellectual disability Lewy body diseases N6 adenosine RNA modification
下载PDF
Enhanced Electrochemical Properties and Optimized Li^(+)Transmission Pathways of PEO/LLZTO-Based Composite Electrolytes Modified by Supramolecular Combination 被引量:1
11
作者 Zhengyi Lu Lin Peng +6 位作者 Yi Rong Enli Wang Ruhua Shi Hongxun Yang Yadong Xu Ruizhi Yang Chao Jin 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期238-246,共9页
Poly(ethylene oxide)(PEO)and Li_(6.75)La_(3)Zr_(1.75)Ta_(0.25)O_(12)(LLZTO)-based composite polymer electrolytes(CPEs)are considered one of the most promising solid electrolyte systems.However,agglomeration of LLZTO w... Poly(ethylene oxide)(PEO)and Li_(6.75)La_(3)Zr_(1.75)Ta_(0.25)O_(12)(LLZTO)-based composite polymer electrolytes(CPEs)are considered one of the most promising solid electrolyte systems.However,agglomeration of LLZTO within PEO and lack of Li^(+)channels result in poor electrochemical properties.Herein,a functional supramolecular combination(CD-TFSI)consisting of activeβ-cyclodextrin(CD)supramolecular with self-assembled LiTFSI salt is selected as an interface modifier to coat LLZTO fillers.Benefiting from vast H-bonds formed betweenβ-CD and PEO matrix and/or LLZTO,homogeneous dispersion and tight interface contact are obtained.Moreover,^(6)Li NMR spectra confirm a new Li^(+)transmission pathway from PEO matrix to LLZTO ceramic then to PEO matrix in the as-prepared PEO/LLZTO@CD-TFSI CPEs due to the typical cavity structure ofβ-CD.As a proof,the conductivity is increased from 5.3×10^(-4)S cm^(-1)to 8.7×10^(-4)S cm^(-1)at 60℃,the Li^(+)transference number is enhanced from 0.38 to 0.48,and the electrochemical stability window is extended to 5.1 V versus Li/Li^(+).Li‖LiFePO_(4)CR2032 coin full cells and pouch cells prove the practical application of the as-prepared PEO/LLZTO@CD-TFSI CPEs.This work offers a new strategy of interface modifying LLZTO fillers with functional supramolecular combination to optimize PEO/LLZTO CPEs for solid lithium batteries. 展开更多
关键词 CONDUCTIVITY interfacial stability LLZTO fillers modifICATION PEO matrix
下载PDF
Current Strategies of Surface Modifications to Polyurethane Biomaterials for Vascular Grafts
12
作者 Huai-Gu Huang Tao Xiang Yue-Xin Chen 《Chinese Medical Sciences Journal》 CAS CSCD 2023年第4期279-285,共7页
As the number of patients suffering from cardiovascular diseases and peripheral vascular diseases rises,the constraints of autologous transplantation remain unavoidable.As a result,artificial vascular grafts must be d... As the number of patients suffering from cardiovascular diseases and peripheral vascular diseases rises,the constraints of autologous transplantation remain unavoidable.As a result,artificial vascular grafts must be developed.Adhesion of proteins,platelets and bacteria on implants can result in stenosis,thrombus formation,and postoperative infection,which can be fatal for an implantation.Polyurethane,as a commonly used biomaterial,has been modified in various ways to deal with the adhesions of proteins,platelets,and bacteria and to stimulate endothelium adhesion.In this review,we briefly summarize the mechanisms behind adhesions,overview the current strategies of surface modifications of polyurethane biomaterials used in vascular grafts,and highlight the challenges that need to be addressed in future studies,aiming to gain a more profound understanding of how to develop artificial polyurethane vascular grafts with an enhanced implantation success rate and reduced side effect. 展开更多
关键词 surface modification POLYURETHANE vascular graft ADHESION
下载PDF
Genetically modified pigs:Emerging animal models for hereditary hearing loss 被引量:1
13
作者 Xiao Wang Tian-Xia Liu +7 位作者 Ying Zhang Liang-Wei Xu Shuo-Long Yuan A-Long Cui Wei-Wei Guo Yan-Fang Wang Shi-Ming Yang Jian-Guo Zhao 《Zoological Research》 SCIE CSCD 2024年第2期284-291,共8页
Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and e... Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models. 展开更多
关键词 PIGS Animal models Hereditary hearing loss Genetic modification Inner ear
下载PDF
Compared discharge characteristics and film modifications of atmospheric pressure plasma jets with two different electrode geometries
14
作者 陈雄 王兴权 +2 位作者 张彬祥 袁明 杨思泽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期537-544,共8页
Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compa... Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compared the discharge characteristics and the film modifications of atmospheric pressure plasma jets with needle-ring electrode(NRE) and doublering electrode(DRE). The results show that jet with NRE has stronger electric field intensity and higher discharge power,making it present more reactive oxygen particles and higher electron temperature, but its discharge stability is insufficient.In contrast, the jet with DRE has uniform electric field distribution of lower field intensity, which allows it to maintain stable discharge over a wide range of applied voltages. Besides, the modification results show that the treatment efficiency of PET film by NRE is higher than that by DRE. These results provide a suitable atmospheric pressure plasma jets device selection scheme for polymer film processing process. 展开更多
关键词 atmospheric pressure plasma jet electrode structure jet characteristics modifICATION
下载PDF
Surface-modified Ag@Ru-P25 for photocatalytic CO_(2) conversion with high selectivity over CH_(4) formation at the solid–gas interface 被引量:3
15
作者 Chaitanya B.Hiragond Sohag Biswas +8 位作者 Niket SPowar Junho Lee Eunhee Gong Hwapyong Kim Hong Soo Kim Jin-Woo Jung Chang-Hee Cho Bryan M.Wong Su-Il In 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期182-196,共15页
Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO_(2) reduction to solar f... Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO_(2) reduction to solar fuels.A surface-modified Ag@Ru-P25 photocatalyst with H_(2)O_(2) treatment was designed in this study to convert CO_(2) and H_(2)O vapor into highly selective CH4.Ru doping followed by Ag nanoparticles(NPs)cocatalyst deposition on P25(TiO_(2))enhances visible light absorption and charge separation,whereas H_(2)O_(2) treatment modifies the surface of the photocatalyst with hydroxyl(–OH)groups and promotes CO_(2) adsorption.High-resonance transmission electron microscopy,X-ray photoelectron spectroscopy,X-ray absorption near-edge structure,and extended X-ray absorption fine structure techniques were used to analyze the surface and chemical composition of the photocatalyst,while thermogravimetric analysis,CO_(2) adsorption isotherm,and temperature programmed desorption study were performed to examine the significance of H_(2)O_(2) treatment in increasing CO_(2) reduction activity.The optimized Ag1.0@Ru1.0-P25 photocatalyst performed excellent CO_(2) reduction activity into CO,CH4,and C2H6 with a~95%selectivity of CH4,where the activity was~135 times higher than that of pristine TiO_(2)(P25).For the first time,this work explored the effect of H_(2)O_(2) treatment on the photocatalyst that dramatically increases CO_(2) reduction activity. 展开更多
关键词 gas-phase CO_(2) reduction H_(2)O_(2) treatment plasmonic nanoparticles solar fuel photocatalyst surface modification
下载PDF
Towards advanced zinc anodes by interfacial modification strategies for efficient aqueous zinc metal batteries 被引量:1
16
作者 Changchun Fan Weijia Meng Jiaye Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期79-110,I0003,共33页
Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,hi... Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs. 展开更多
关键词 Aqueous zinc metal batteries Zinc metal anode Interfacial modification Artificial interfacial coating In-situ interfacial coating
下载PDF
Peanut proteins:Extraction,modifications,and applications:A comprehensive review
17
作者 Song Cui David Julian McClements +7 位作者 Xingfeng Xu Bo Jiao Liyang Zhou Hualu Zhou Liu Xiong Qiang Wang Qingjie Sun Lei Dai 《Grain & Oil Science and Technology》 CAS 2023年第3期135-147,共13页
As naturally sourced proteins,peanut proteins have garnered significant attention from the food industry,owing to their numerous advantages,such as easy extraction,non-pungency,and high bioavailability.Furthermore,pea... As naturally sourced proteins,peanut proteins have garnered significant attention from the food industry,owing to their numerous advantages,such as easy extraction,non-pungency,and high bioavailability.Furthermore,peanut proteins are highly digestible in the gastrointestinal tract and boast a high net protein utilization rate,making them an appealing protein source in food products and a promising alternative to animal protein.In this paper,the recent works on the extraction method,modification method,and application of peanut proteins were reviewed.Both advantages and disadvantages of current extraction and modification were discussed.Recently updated information about peanut protein research was summarized.Based on these,the prospection of peanut proteins research was presented,which may be instructive for future research in this field.Future research is still needed for accessible modification methods to develop the functional properties of peanut proteins. 展开更多
关键词 Peanut protein COMPOSITION Extraction methods modifications Applications Plant-based foods
下载PDF
Redox and metabolic regulation of epigenetic modifications:an emerging toxic action mechanism
18
作者 Wan-Qian Guo Wu-Sheng Xiao Wei-Dong Hao 《Toxicology Advances》 2023年第3期1-12,共12页
Epigenetic modifications modulate conformational structure of chromatin and consequently gene expression by enzyme-mediated chemical modifications of DNA and histones.The activities of epigenetic modifying enzymes dep... Epigenetic modifications modulate conformational structure of chromatin and consequently gene expression by enzyme-mediated chemical modifications of DNA and histones.The activities of epigenetic modifying enzymes depend on many co-substrates and cofactors,such as 2-oxoglutarate(2-OG),iron,S-adenosylmethionine(SAM),nicotinamide adenine dinucleotide(NAD+),flavin adenine dinucleotide(FAD),and acetyl-CoA.These factors are inter-connecting molecules that integrate cellular nutrient metabolism and redox homeostasis,two key regulators of cell proliferation,cell survival,and cell functions.Dysregulation of such delicate regulatory network has been implicated in many pathological conditions and also been increasingly recognized as an emerging mechanism responsible for environmental pollutant-induced adverse effects.In this review,we first summarize DNA and histone modifying enzymes and their essential factors,then discuss the metabolic sources and the redox regulatory roles of these enzymatic factors,and finally elaborate the mechanisms of how targeting such factors by environmental pollutants influences epigenetic regulation and perturbs cellular functions. 展开更多
关键词 epigenetic modifications redox state cellular metabolism
下载PDF
A concise review on surface and structural modification of porous zeolite scaffold for enhanced hydrogen storage
19
作者 B.A.Abdulkadir R.S.R.Mohd Zaki +4 位作者 A.T.Abd Wahab S.N.Miskan Anh-Tam Nguyen Dai-Viet N.Vo H.D.Setiabudi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期33-53,共21页
Investigating zeolites as hydrogen storage scaffolds is imperative due to their porous nature and favorable physicochemical properties.Nevertheless,the storage capacity of the unmodified zeolites has been rather unsat... Investigating zeolites as hydrogen storage scaffolds is imperative due to their porous nature and favorable physicochemical properties.Nevertheless,the storage capacity of the unmodified zeolites has been rather unsatisfactory(0.224%-1.082%(mass))compared to its modified counterpart.Thus,the contemporary focus on enhancing hydrogen storage capacities has led to significant attention towards the utilization of modified zeolites,with studies exploring surface modifications through physical and chemical treatments,as well as the integration of various active metals.The enhanced hydrogen storage properties of zeolites are attributed to the presence of aluminosilicates from alkaline and alkaline-earth metals,resulting in increased storage capacity through interactions with the charge density of these aluminosilicates.Therefore,there is a great demand to critically review their role such as well-defined topology,pore structure,good thermal stability,and tunable hydrophilicity in enhanced hydrogen storage.This article aimed to critically review the recent research findings based on modified zeolite performance for enhanced hydrogen storage.Some of the factors affecting the hydrogen storage capacities of zeolites that can affect the rate of reaction and the stability of the adsorbent,like pressure,structure,and morphology were studied,and examined.Then,future perspectives,recommendations,and directions for modified zeolites were discussed. 展开更多
关键词 Zeolites Hydrogen storage Surface modification Adsorption Active metal
下载PDF
Quantifying source-sink relationships in leaf-color modified rice genotypes during grain filling
20
作者 Zhenxiang Zhou Paul CStruik +4 位作者 Junfei Gu Peter E.L.van der Putten Zhiqin Wang Jianchang Yang Xinyou Yin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期2923-2940,共18页
Leaf-color modification can affect canopy photosynthesis,with potential effects on rice yield and yield components.Modulating source-sink relationships through crop management is often used to improve crop productivit... Leaf-color modification can affect canopy photosynthesis,with potential effects on rice yield and yield components.Modulating source-sink relationships through crop management is often used to improve crop productivity.This study investigated whether and how modifying leaf color alters source-sink relationships and whether current crop cultivation practices remain applicable for leaf-color modified genotypes.Periodically collected data of total biomass and nitrogen(N)accumulation in rice genotypes of four genetic backgrounds and their leaf-color modified variants(greener or yellower)were analyzed,using a recently established modelling method to quantify the source-sink(im)balance during grain filling.Among all leaf-color variants,only one yellower-leaf variant showed a higher source capacity than its normal genotype.This was associated with greater post-flowering N-uptake that prolonged the functional leaf-N duration,and this greater post-flowering N-uptake was possible because of reduced pre-flowering N-uptake.A density experiment showed that current management practices(insufficient planting density accompanied by abundant N application)are unsuitable for the yellower-leaf genotype,ultimately limiting its yield potential.Leaf-color modification affects source-sink relationships by regulating the N trade-off between pre-and post-flowering uptake,as well as N translocation between source and sink organs.To best exploit leaf-color modification for improving crop productivity,adjustments of crop management practices are required. 展开更多
关键词 source-sink relationship biomass nitrogen Oryza sativa leaf-color modification
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部