Cloud-radiation interaction has a large impact on the Earth's weather and climate change, and clouds with different heights cause different radiative forcing. Thus, the information on the statistics of cloud height a...Cloud-radiation interaction has a large impact on the Earth's weather and climate change, and clouds with different heights cause different radiative forcing. Thus, the information on the statistics of cloud height and its variation in space and time is very important to global climate change studies. In this paper, cloud top height (CTH), cloud base height (CBH) and cloud thickness over regions of the Tibetan Plateau, south slope of the plateau and South Asian Monsoon are analyzed based on CloudSat data during the period from June 2006 to December 2007. The results show that frequency of CTH and CBH in unit area over the studied regions have certain temporal-spatial continuity. The CTH and CBH of different cloud types have different variation scopes, and their seasonal variations are distinct. Cloud thickness is large (small) in summer (winter), and the percentages of different cloud types also have certain regularity.展开更多
The fluctuation of lake levels in Tibetan area may be well reflected by the landformevidences, especially the last highest lake levels. This, in a certain degree, is more suitable fordetermning the climatic humidity a...The fluctuation of lake levels in Tibetan area may be well reflected by the landformevidences, especially the last highest lake levels. This, in a certain degree, is more suitable fordetermning the climatic humidity and aridity in macro scale compared with many other indicatorswhich are also sensitive to the sedimentary environmental change. According to the analyses of thelakes such as Tianshuihai Lake, Bangdag Co, Lungmu Co, Bangong Co, Serfing Co, Chabyer Caka,Qahan salt lake, Qinghai lake, the lake group in north-east Qiangtang and the lake group in southTibet. the authors thought that the lakes on the Tibetan Plateau generally appeared the high lakelevel during 40-25 ka BP. The plenty of water quantity may represent a special warm-humid stage inTibet area compared with the sub-warm-humid stage reflected by marine oxygen isotope records.Thus, there may existed different driving factors to climatic changes between the high latitUde areasand middle-low latitude mountains.展开更多
Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which th...Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which the air parcel is lifted. We analyzed the main detrainment height over the Tibetan Plateau and its southern slope based on the CloudSat Cloud Profiling Radar 2B_GEOPROF dataset and the Aura Microwave Limb Sounder Level 2 cloud ice product onboard the Atrain constellation of Earth-observing satellites. It was found that the DCSs over the Tibetan Plateau and its southern slope have a higher main detrainment height (about 10-16 km) than other regions in the same latitude. The mean main detrainment heights are 12.9 and 13.3 km over the Tibetan Plateau and its southern slope, respectively. The cloud ice water path decreases by 16.8% after excluding the influences of DCSs, and the height with the maximum increase in cloud ice water content is located at 178 hPa (about 13 km). The main detrainment height and outflow horizontal range are higher and larger over the central and eastern Tibetan Plateau, the west of the southern slope, and the southeastern edge of the Tibetan Plateau than that over the northwestern Tibetan Plateau. The main detrainment height and outflow horizontal range are lower and broader at nighttime than during daytime.展开更多
Cloud vertical structure(CVS)strongly affects atmospheric circulation and radiative transfer.Yet,long-term,groundbased observations are scarce over the Tibetan Plateau(TP)despite its vital role in global climate.This ...Cloud vertical structure(CVS)strongly affects atmospheric circulation and radiative transfer.Yet,long-term,groundbased observations are scarce over the Tibetan Plateau(TP)despite its vital role in global climate.This study utilizes ground-based lidar and Ka-band cloud profiling radar(KaCR)measurements at Yangbajain(YBJ),TP,from October 2021 to September 2022 to characterize cloud properties.A satisfactorily performing novel anomaly detection algorithm(LevelShiftAD)is proposed for lidar and KaCR profiles to identify cloud boundaries.Cloud base heights(CBH)retrieved from KaCR and lidar observations show good consistency,with a correlation coefficient of 0.78 and a mean difference of-0.06 km.Cloud top heights(CTH)derived from KaCR match the FengYun-4A and Himawari-8 products well.Thus,KaCR measurements serve as the primary dataset for investigating CVSs over the TP.Different diurnal cycles occur in summer and winter.The diurnal cycle is characterized by a pronounced increase in cloud occurrence frequency in the afternoon with an early-morning decrease in winter,while cloud amounts remain high all day,with scattered nocturnal increases in summer.Summer features more frequent clouds with larger geometrical thicknesses,a higher multi-layer ratio,and greater inter-cloud spacing.Around 26%of the cloud bases occur below 0.5 km.Winter exhibits a bimodal distribution of cloud base heights with peaks at 0-0.5 km and 2-2.5 km.Single-layer and geometrically thin clouds prevail at YBJ.This study enriches long-term measurements of CVSs over the TP,and the robust anomaly detection method helps quantify cloud macro-physical properties via synergistic lidar and radar observations.展开更多
Trend uncertainty in the ozone valley over the Tibetan Plateau(OVTP)and the South Asian high(SAH)during1979–2009 in ERA-Interim(interim reanalysis data from the ECMWF),JRA-55(55-yr reanalysis data from the Jap...Trend uncertainty in the ozone valley over the Tibetan Plateau(OVTP)and the South Asian high(SAH)during1979–2009 in ERA-Interim(interim reanalysis data from the ECMWF),JRA-55(55-yr reanalysis data from the Japan Meteorological Agency),and NCEP-CFSR(Climate Forecast System Reanalysis)datasets was evaluated.The results showed that the NCEP-CFSR OVTP became strong in the summers of 1979–2009,whereas it became weak according to ERA-Interim and JRA-55.Satellite data merged with TOMS(Total Ozone Mapping Spectrometer)and OMI(Ozone Monitoring Instrument)agreed with the OVTP trend of NCEP-CFSR.The OVTP strengthening in NCEP-CFSR may have been caused by SAH intensification,a rising tropopause,and increasing ozone over non-TP(non-Tibetan Plateau)areas(27°–37°N,〈75°E and〉105°E).Analogously,the OVTP weakening in ERA-Interim and JRA-55 may have been affected by weakening SAH,descending tropopause,and decreasing non-TP ozone.展开更多
Aims Human activities have dramatically increased nutrient inputs to ecosys-tems,impacting plant community diversity,composition and function-ing.Extensive research has shown that a decrease in species diversity and a...Aims Human activities have dramatically increased nutrient inputs to ecosys-tems,impacting plant community diversity,composition and function-ing.Extensive research has shown that a decrease in species diversity and an increase in productivity are a common phenomenon following fertilization in grasslands ecosystem.The magnitude of the response of species diversity and above-ground net primary productivity(ANPP)to fertilization mainly depends on species traits(mean trait values)and traits variability(plasticity).Our aim of this study was to examine(i)changes of species diversity(species richness and Shannon-Wiener index)and ANPP following fertilization;(ii)which species traits or community-weighted mean(CWM)traits can determine ANPP,as expected from the‘biomass ratio hypothesis’;and(iii)the relative role of intra-specific and inter-specific trait variability in this process following fertilization.Methods We measured ANPP and four key plant functional traits:specific leaf area(SLA),leaf dry matter content(LDMC),mature plant height(MPH)and leaf nitrogen concentration(LNC)for 25 component species along a fertilization gradient in an alpine meadow on the Tibetan Plateau.In addition,trait variation of species was assessed using coefficients of variation(CV),and we calculated the ratio of the CVintra to the CVinter.Important Findings Our results showed that:(i)fertilization significantly reduced species richness and Shannon-Weiner diversity index,but sig-nificantly increased ANPP;(ii)there was a significant positive correlation between ANPP and CWM-SLA and CWM-MPH,yet there was no significant relationship between ANPP and CWM-LNC or CWM-LDMC;(iii)intra-specific variability in SLA and MPH was found to be much greater than inter-specific variability,especially at the higher fertilization levels.We con-cluded that CWM-SLA and CWM-MPH can be used to assess the impacts of species changes on ecosystem functioning,and dominant species can maximize resource use through intra-spe-cific variability in SLA and MPH to compensate for the loss of species following fertilization,therefore maintaining high com-munity productivity.展开更多
基金funded by National Natural Science Foundation of China(40830102 and 41205016)
文摘Cloud-radiation interaction has a large impact on the Earth's weather and climate change, and clouds with different heights cause different radiative forcing. Thus, the information on the statistics of cloud height and its variation in space and time is very important to global climate change studies. In this paper, cloud top height (CTH), cloud base height (CBH) and cloud thickness over regions of the Tibetan Plateau, south slope of the plateau and South Asian Monsoon are analyzed based on CloudSat data during the period from June 2006 to December 2007. The results show that frequency of CTH and CBH in unit area over the studied regions have certain temporal-spatial continuity. The CTH and CBH of different cloud types have different variation scopes, and their seasonal variations are distinct. Cloud thickness is large (small) in summer (winter), and the percentages of different cloud types also have certain regularity.
文摘The fluctuation of lake levels in Tibetan area may be well reflected by the landformevidences, especially the last highest lake levels. This, in a certain degree, is more suitable fordetermning the climatic humidity and aridity in macro scale compared with many other indicatorswhich are also sensitive to the sedimentary environmental change. According to the analyses of thelakes such as Tianshuihai Lake, Bangdag Co, Lungmu Co, Bangong Co, Serfing Co, Chabyer Caka,Qahan salt lake, Qinghai lake, the lake group in north-east Qiangtang and the lake group in southTibet. the authors thought that the lakes on the Tibetan Plateau generally appeared the high lakelevel during 40-25 ka BP. The plenty of water quantity may represent a special warm-humid stage inTibet area compared with the sub-warm-humid stage reflected by marine oxygen isotope records.Thus, there may existed different driving factors to climatic changes between the high latitUde areasand middle-low latitude mountains.
基金supported by the National Key Research and Development Program on Monitoring, Early Warning and Prevention of Major Natural Disasters (Grant No. 2018YFC1506006)the National Natural Science Foundation of China (Project Nos. 41875108 and 41475037)
文摘Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which the air parcel is lifted. We analyzed the main detrainment height over the Tibetan Plateau and its southern slope based on the CloudSat Cloud Profiling Radar 2B_GEOPROF dataset and the Aura Microwave Limb Sounder Level 2 cloud ice product onboard the Atrain constellation of Earth-observing satellites. It was found that the DCSs over the Tibetan Plateau and its southern slope have a higher main detrainment height (about 10-16 km) than other regions in the same latitude. The mean main detrainment heights are 12.9 and 13.3 km over the Tibetan Plateau and its southern slope, respectively. The cloud ice water path decreases by 16.8% after excluding the influences of DCSs, and the height with the maximum increase in cloud ice water content is located at 178 hPa (about 13 km). The main detrainment height and outflow horizontal range are higher and larger over the central and eastern Tibetan Plateau, the west of the southern slope, and the southeastern edge of the Tibetan Plateau than that over the northwestern Tibetan Plateau. The main detrainment height and outflow horizontal range are lower and broader at nighttime than during daytime.
基金jointly funded by the Second Tibetan Plateau Scientific Expedition and Research Program of China under Grant 2019QZKK0604the National Natural Science Foundation of China(Grant Nos.92044303 and 42001294).
文摘Cloud vertical structure(CVS)strongly affects atmospheric circulation and radiative transfer.Yet,long-term,groundbased observations are scarce over the Tibetan Plateau(TP)despite its vital role in global climate.This study utilizes ground-based lidar and Ka-band cloud profiling radar(KaCR)measurements at Yangbajain(YBJ),TP,from October 2021 to September 2022 to characterize cloud properties.A satisfactorily performing novel anomaly detection algorithm(LevelShiftAD)is proposed for lidar and KaCR profiles to identify cloud boundaries.Cloud base heights(CBH)retrieved from KaCR and lidar observations show good consistency,with a correlation coefficient of 0.78 and a mean difference of-0.06 km.Cloud top heights(CTH)derived from KaCR match the FengYun-4A and Himawari-8 products well.Thus,KaCR measurements serve as the primary dataset for investigating CVSs over the TP.Different diurnal cycles occur in summer and winter.The diurnal cycle is characterized by a pronounced increase in cloud occurrence frequency in the afternoon with an early-morning decrease in winter,while cloud amounts remain high all day,with scattered nocturnal increases in summer.Summer features more frequent clouds with larger geometrical thicknesses,a higher multi-layer ratio,and greater inter-cloud spacing.Around 26%of the cloud bases occur below 0.5 km.Winter exhibits a bimodal distribution of cloud base heights with peaks at 0-0.5 km and 2-2.5 km.Single-layer and geometrically thin clouds prevail at YBJ.This study enriches long-term measurements of CVSs over the TP,and the robust anomaly detection method helps quantify cloud macro-physical properties via synergistic lidar and radar observations.
基金Supported by the National Natural Science Foundation of China(41305039,41675039,91537213,41375047,41375092,41475140,41641042,and 41575057)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Trend uncertainty in the ozone valley over the Tibetan Plateau(OVTP)and the South Asian high(SAH)during1979–2009 in ERA-Interim(interim reanalysis data from the ECMWF),JRA-55(55-yr reanalysis data from the Japan Meteorological Agency),and NCEP-CFSR(Climate Forecast System Reanalysis)datasets was evaluated.The results showed that the NCEP-CFSR OVTP became strong in the summers of 1979–2009,whereas it became weak according to ERA-Interim and JRA-55.Satellite data merged with TOMS(Total Ozone Mapping Spectrometer)and OMI(Ozone Monitoring Instrument)agreed with the OVTP trend of NCEP-CFSR.The OVTP strengthening in NCEP-CFSR may have been caused by SAH intensification,a rising tropopause,and increasing ozone over non-TP(non-Tibetan Plateau)areas(27°–37°N,〈75°E and〉105°E).Analogously,the OVTP weakening in ERA-Interim and JRA-55 may have been affected by weakening SAH,descending tropopause,and decreasing non-TP ozone.
基金This study was supported by Natural Science Foundation of China(41230852)Key Program of Chinese Academy of Sciences(KJZD-EW-TZ-G10)+3 种基金Northwest A&F University(Z109021107,Z109021307,QN2013070)West Light Foundation of Chinese Academy of Sciences(K318021305)Natural Science Foundation of Shaanxi Province(2016JQ3008)the China Scholarship Council.
文摘Aims Human activities have dramatically increased nutrient inputs to ecosys-tems,impacting plant community diversity,composition and function-ing.Extensive research has shown that a decrease in species diversity and an increase in productivity are a common phenomenon following fertilization in grasslands ecosystem.The magnitude of the response of species diversity and above-ground net primary productivity(ANPP)to fertilization mainly depends on species traits(mean trait values)and traits variability(plasticity).Our aim of this study was to examine(i)changes of species diversity(species richness and Shannon-Wiener index)and ANPP following fertilization;(ii)which species traits or community-weighted mean(CWM)traits can determine ANPP,as expected from the‘biomass ratio hypothesis’;and(iii)the relative role of intra-specific and inter-specific trait variability in this process following fertilization.Methods We measured ANPP and four key plant functional traits:specific leaf area(SLA),leaf dry matter content(LDMC),mature plant height(MPH)and leaf nitrogen concentration(LNC)for 25 component species along a fertilization gradient in an alpine meadow on the Tibetan Plateau.In addition,trait variation of species was assessed using coefficients of variation(CV),and we calculated the ratio of the CVintra to the CVinter.Important Findings Our results showed that:(i)fertilization significantly reduced species richness and Shannon-Weiner diversity index,but sig-nificantly increased ANPP;(ii)there was a significant positive correlation between ANPP and CWM-SLA and CWM-MPH,yet there was no significant relationship between ANPP and CWM-LNC or CWM-LDMC;(iii)intra-specific variability in SLA and MPH was found to be much greater than inter-specific variability,especially at the higher fertilization levels.We con-cluded that CWM-SLA and CWM-MPH can be used to assess the impacts of species changes on ecosystem functioning,and dominant species can maximize resource use through intra-spe-cific variability in SLA and MPH to compensate for the loss of species following fertilization,therefore maintaining high com-munity productivity.