Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,hi...Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs.展开更多
Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing...Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices.展开更多
In this study,the interactions between a Ga-based liquid metal,GaInSn,and several metal materials,including pure metals(Ni and Ti)and alloys(316H stainless steel(SS)and GH3535),at 650℃were investigated.The aim was to...In this study,the interactions between a Ga-based liquid metal,GaInSn,and several metal materials,including pure metals(Ni and Ti)and alloys(316H stainless steel(SS)and GH3535),at 650℃were investigated.The aim was to evaluate the corrosion performance and select a suitable candidate material for use as a molten salt manometer diaphragm in thermal energy storage systems.The results indicated that the alloys(316H SS and GH3535)exhibited less corrosion than pure metals(Ni and Ti)in liquid GaInSn.Ga-rich binary intermetallic compounds were found to form on the surfaces of all the tested metal materials exposed to liquid GaInSn,as a result of the decomposition of liquid GaInSn and its reaction with the constituent elements of the metal materials.The corrosion mechanism for all the tested materials exposed to liquid GaInSn was also investigated and proposed,which may aid in selecting the optimal candidate material when liquid GaInSn is used as the pressure-sensing medium.展开更多
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a...For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location.展开更多
Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and th...Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and the incompatibility between electrode and electrolytes lead to the deterioration of electrochemical performance of AZMBs during the cycling.The critical point to achieve the stable cycling of AZMBs is to properly regulate the zinc ion solvated structure and transfer behavior between metallic Zn anode and electrolyte.In recent years,numerous achievements have been made to resolve the formation of Zn dendrite and interface incompatible issues faced by AZMBs via optimizing the sheath structure and transport capability of zinc ions at electrode-electrolyte interface.In this review,the challenges for metallic Zn anode and electrode-electrolyte interface in AZMBs including dendrite formation and interface characteristics are presented.Following the influences of different strategies involving designing advanced electrode structu re,artificial solid electrolyte interphase(SEI)on Zn anode and electrolyte engineering to regulate zinc ion solvated sheath structure and transport behavior are summarized and discussed.Finally,the perspectives for the future development of design strategies for dendrite-free Zn metal anode and long lifespan AZMBs are also given.展开更多
The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal ba...The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal batteries(LMBs),with their ultralow reduction potential and high theoretical capacity,are widely regarded as the most promising technical pathway for achieving high energy density batteries.In this review,we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs.Furthermore,we propose improved strategies involving interface engineering,3D current collector design,electrolyte optimization,separator modification,application of alloyed anodes,and external field regulation to address these challenges.The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them.This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes.Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface,leading to increased interface inhomogeneity—a critical factor contributing to failure in all-solidstate lithium metal batteries.Based on recent research works,this perspective highlights the current status of research on developing high-performance LMBs.展开更多
Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review f...Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping,bimetallic/bi-anionic TMCs,and TMCs-based heterostructure composites.It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band,d/p-band center,electron filling,and valence state.Moreover,the elec-tronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity,electron filling,and ion radius,resulting in electron redistribution,bonds reconstruction,induced vacancies due to the electronic interaction and changed crystal structure such as lat-tice spacing and lattice distortion.Different from the aforementioned two strategies,heterostructures are constructed by two types of TMCs with different Fermi energy levels,which causes built-in electric field and electrons transfer through the interface,and induces electron redistribution and arranged local atoms to regulate the electronic structure.Additionally,the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out.It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries.展开更多
The development of a durable metallic coating on diverse substrates is both intriguing and challenging,particularly in the research of metal-conductive materials for applications such as batteries,soft electronics,and...The development of a durable metallic coating on diverse substrates is both intriguing and challenging,particularly in the research of metal-conductive materials for applications such as batteries,soft electronics,and beyond.Herein,by learning from the pencil-writing process,a facile solid-ink rubbing technology(SIR-tech)is invented to address the above challenge.The solid-ink is exampled by rational combination of liquid metal and graphite particles.By harnessing the synergistic effects between rubbing and adhesion,controllable metallic skin is successfully formed onto metals,woods,ceramics,and plastics without limitation in size and shape.Moreover,outperforming pure liquid-metal coating,the composite metallic skin by SIR-tech is very robust due to the self-lamination of graphite nanoplate exfoliated by liquid-metal rubbing.The critical factors controlling the structures-properties of the composite metallic skin have been systematically investigated as well.For applications,the SIR-tech is demonstrated to fabricate high-performance composite current collectors for next-generation batteries without traditional metal foils.Meanwhile,advanced skin-electrodes are further demonstrated for stable triboelectricity generation even under temperature fluctuation from-196 to 120℃.This facile and highly-flexible SIR-tech may work as a powerful platform for the studies on functional coatings by liquid metals and beyond.展开更多
The realization of 100%polarized topologicalWeyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications.Here,we theoretically investigate the electronic...The realization of 100%polarized topologicalWeyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications.Here,we theoretically investigate the electronic and topological properties of the zinc-blende compound VAs,which was deemed as a half-metallic ferromagnet related to dynamic correlations.Based on the combination of density functional theory and dynamical mean field theory,we uncover that the half-metallic ferromagnet VAs exhibits attractive Weyl semimetallic behaviors which are very close to the Fermi level in the DFT+U regime with effect U values ranging from 1.5 eV to 2.5 eV.Meanwhile,we also investigate the magnetization-dependent topological properties;the results show that the change of magnetization directions only slightly affects the positions of Weyl points,which is attributed to the weak spin–orbital coupling effects.The topological surface states of VAs projected on semi-infinite(001)and(111)surfaces are investigated.The Fermi arcs of all Weyl points are clearly visible on the projected Fermi surfaces.Our findings suggest that VAs is a fully spin-polarized Weyl semimetal with many-body correlated effects in the effective U values range from 1.5 eV to 2.5 eV.展开更多
Lithium metal batteries(LMBs) promise energy density over 400 Wh kg^(-1).However,they suffer severe electrochemical performance deterioration at sub-zero temperatures.Such failure behavior highly correlates to inferio...Lithium metal batteries(LMBs) promise energy density over 400 Wh kg^(-1).However,they suffer severe electrochemical performance deterioration at sub-zero temperatures.Such failure behavior highly correlates to inferior lithium metal anode(LMA) compatibility and sluggish Li^(+) desolvation.Here,we demonstrate that cyclopentylmethyl ether(CPME) based diluted high-concentration electrolyte(DHCE)enables-60℃ LMBs operation.By leveraging the loose coordination between Li^(+) and CPME,such developed electrolyte boosts the formation of ion clusters to derive anion-dominant interfacial chemistry for enhancing LMA compatibility and greatly accelerates Li^(+) desolvation kinetics.The resulting electrolyte demonstrates high Coulombic efficiencies(CE),providing over 99.5%,99.1%,98.5% and 95% at 25,-20,-40,and-60℃respectively.The assembled Li-S battery exhibits remarkable cyclic stability in-20,and-40℃ at 0.2 C charging and 0.5 C discharging.Even at-60℃,Li-S cell with this designed electrolyte retains> 70% of the initial capacity over 170 cycles.Besides,lithium metal coin cell and pouch cell with10 mg cm^(-2) high S cathode loading exhibit cycling stability at-20℃.This work offers an opportunity for rational designing electrolytes toward low temperature LMBs.展开更多
The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clu...The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clusters via the metal-vacancy restraint mechanism,which can precisely regulate the bonding and valence state of heterometal atoms doped in 2D molybdenum disulfide.The unsaturated valence state of heterometal Pt and Ru cluster atoms form a spatial coordination structure with Pt–S and Ru–O–S as catalytically active sites.Among them,the strong binding energy of negatively charged suspended S and O sites for H+,as well as the weak adsorption of positively charged unsaturated heterometal atoms for H*,reduces the energy barrier of the hydrogen evolution reaction proved by theoretical calculation.Whereupon,the electrocatalytic hydrogen evolution performance is markedly improved by the ensemble effect of unsaturated heterometal atoms and highlighted with an overpotential of 84 mV and Tafel slope of 68.5 mV dec^(−1).In brief,this metal vacancy-induced valence state regulation of heterometal can manipulate the coordination structure and catalytic activity of heterometal atoms doped in the 2D atomic lattice but not limited to 2D nanomaterials.展开更多
Copper possesses very strong chacophile properties,but under the conditions found in meteorites,its behavior is like that of siderophile elements.The Suizhou meteorite is a highly shocked L6 chondrite.Troilite and tae...Copper possesses very strong chacophile properties,but under the conditions found in meteorites,its behavior is like that of siderophile elements.The Suizhou meteorite is a highly shocked L6 chondrite.Troilite and taenite are considered the main primary carrier of copper in this meteorite,and the post-shock thermal episode is considered the main reason that elemental Cu migrates from its original host phase and forms metallic grains.The Suizhou meteorite contains a few very thin shock melt veins.The occurrence and behavior of metallic copper in this meteorite were studied by optical microscopic examination,electron microprobe analyses,and high-resolution X-ray elemental intensity mapping.Our results show that metallic copper is abundant in the Suizhou chondritic rock.Metallic copper grains adjacent to small troilite grains inside FeNi metal are the most common occurrence,and those at the FeNi metal–troilite interface are the second most common case.The metallic copper grains occurring at the interface of FeNi metal/troililte and silicate are rather rare.Metallic copper grains are not observed within the Suizhou shock veins,Instead,Cu in elemental form is transferred through shock metamorphism into FeNi metal+troilite intergrowths.Four diff erent occurrence types of Cu in the FeNi metal+troilite intergrowths have been identifi ed:the concentrations of Cu in the FeNi+FeS intergrowths for four occurrence types are rather close,we estimate it might be lower than 1 wt%.展开更多
Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite ne...Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite new,fundamental issues raise regarding the energy storage mechanism and other aspects affecting electrochemical performance.Severe volume expansion,low intrinsic conductivity and slow ion diffusion kinetics jeopardize the performance of metal tellurides,so that rational design and engineering are crucial to circumvent these disadvantages.Herein,this review provides an in-depth discussion of recent investigations and progresses of metal tellurides,beginning with a critical discussion on the energy storage mechanisms of metal tellurides in various MBs.In the following,recent design and engineering strategies of metal tellurides,including morphology engineering,compositing,defect engineering and heterostructure construction,for high-performance MBs are summarized.The primary focus is to present a comprehensive understanding of the structural evolution based on the mechanism and corresponding effects of dimension control,composition,electron configuration and structural complexity on the electrochemical performance.In closing,outlooks and prospects for future development of metal tellurides are proposed.This work also highlights the promising directions of design and engineering strategies of metal tellurides with high performance and low cost.展开更多
The absence of control over carriers transport during electrochemical cycling,accompanied by the deterioration of the solid electrolyte interphase(SEI)and the growth of lithium dendrites,has hindered the development o...The absence of control over carriers transport during electrochemical cycling,accompanied by the deterioration of the solid electrolyte interphase(SEI)and the growth of lithium dendrites,has hindered the development of lithium metal batteries.Herein,a separator complexion consisting of polyacrylonitrile(PAN)nanofiber and MIL-101(Cr)particles prepared by electrospinning is proposed to bind the anions from the electrolyte utilizing abundant effective open metal sites in the MIL-101(Cr)particles to modulate the transport of non-effective carriers.The binding effect of the PANM separator promotes uniform lithium metal deposition and enhances the stability of the SEI layer and long cycling stability of ultra-high nickel layered oxide cathodes.Taking PANM as the Li||NCM96 separator enables high-voltage cycling stability,maintaining 72%capacity retention after 800 cycles at a charging and discharging rate of 0.2 C at a cut-off voltage of 4.5 V and 0°C.Meanwhile,the excellent high-rate performance delivers a specific capacity of 156.3 mA h g^(-1) at 10 C.In addition,outstanding cycling performance is realized from−20 to 60°C.The separator engineering facilitates the electrochemical performance of lithium metal batteries and enlightens a facile and promising strategy to develop fast charge/discharge over a wide range of temperatures.展开更多
A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of th...A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling.展开更多
Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to...Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.展开更多
Owing to the utilization of lithium metal as anode with the ultrahigh theoretical capacity density of 3860 mA h g^(-1)and oxide-based ceramic solid-state electrolytes(SE),e.g.,garnet-type Li7La_(3)Zr_(2)O_(12)(LLZO),a...Owing to the utilization of lithium metal as anode with the ultrahigh theoretical capacity density of 3860 mA h g^(-1)and oxide-based ceramic solid-state electrolytes(SE),e.g.,garnet-type Li7La_(3)Zr_(2)O_(12)(LLZO),all-state-state lithium metal batteries(ASLMBs)have been widely accepted as the promising alternatives for providing the satisfactory energy density and safety.However,its applications are still challenged by plenty of technical and scientific issues.In this contribution,the co-sintering temperature at 500℃is proved as a compromise method to fabricate the composite cathode with structural integrity and declined capacity fading of LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM).On the other hand,it tends to form weaker grain boundary(GB)inside polycrystalline LLZO at inadequate sintering temperature for LLZO,which can induce the intergranular failure of SE during the growth of Li filament inside the unavoidable defect on the interface of SE.Therefore,increasing the strength of GB,refining the grain to 0.4μm,and precluding the interfacial defect are suggested to postpone the electro-chemo-mechanical failure of SE with weak GB.Moreover,the advanced sintering techniques to lower the co-sintering temperature for both NCM-LLZO composite cathode and LLZO SE can be posted out to realize the viability of state-of-the-art ASLMBs with higher energy density as well as the guaranteed safety.展开更多
Despite the proficiency of lithium(Li)-7 NMR spectroscopy in delineating the physical and chemical states of Li metal electrodes,challenges in specimen preparation and interpretation impede its progress.In this study,...Despite the proficiency of lithium(Li)-7 NMR spectroscopy in delineating the physical and chemical states of Li metal electrodes,challenges in specimen preparation and interpretation impede its progress.In this study,we conducted a comprehensive postmortem analysis utilizing ^(7)Li NMR,employing a stan-dard magic angle spinning probe to examine protective-layer coated Li metal electrodes and LiAg alloy electrodes against bare Li metal electrodes within Li metal batteries(LMBs).Our investigation explores the effects of sample burrs,alignment with the magnetic field,the existence of liquid electrolytes,and precycling on the ^(7)Li NMR signals.Through contrasting NMR spectra before and after cycling,we identi-fied alterations in Li^(0) and Li^(+) signals attributable to the degradation of the Li metal electrode.Our NMR analyses decisively demonstrate the efficacy of the protective layer in mitigating dendrite and solid elec-trolyte interphase formation.Moreover,we noted that Li*ions near the Li metal surface exhibit magnetic susceptibility anisotropy,revealing a novel approach to studying diamagnetic species on Li metal elec-trodes in LMBs.This study provides valuable insights and practical guidelines for characterizing distinct lithium states within LMBs.展开更多
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts...Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.展开更多
BACKGROUND Endoscopic ultrasound-guided biliary drainage using electrocautery-enhanced(ECE)delivery of lumen-apposing metal stent(LAMS)is gradually being re-cognized as a viable palliative technique for malignant bili...BACKGROUND Endoscopic ultrasound-guided biliary drainage using electrocautery-enhanced(ECE)delivery of lumen-apposing metal stent(LAMS)is gradually being re-cognized as a viable palliative technique for malignant biliary obstruction after endoscopic retrograde cholangiopancreatography(ERCP)failure.However,most of the studies that have assessed its efficacy and safety were small and hetero-geneous.Prior meta-analyses of six or fewer studies that were published 2 years ago were therefore underpowered to yield convincing evidence.AIM To update the efficacy and safety of ECE-LAMS for treatment of biliary ob-struction after ERCP failure.METHODS We searched PubMed,EMBASE,and Scopus databases from the inception of the ECE technique to May 13,2022.Primary outcome measure was pooled technical success rate,and secondary outcomes were pooled rates of clinical success,re-intervention,and adverse events.Meta-analysis was performed using a random-effects model following Freeman-Tukey double-arcsine transformation in R soft-ware(version 4.1.3).RESULTS Fourteen eligible studies involving 620 participants were ultimately included.The pooled rate of technical success was 96.7%,and clinical success was 91.0%.Adverse events were reported in 17.5%of patients.Overall reinter-vention rate was 7.3%.Subgroup analyses showed results were generally consistent.CONCLUSION ECE-LAMS has favorable success with acceptable adverse events in relieving biliary obstruction when ERCP is impossible.The consistency of results across most subgroups suggested that this is a generalizable approach.展开更多
基金the financial support from the Australian Research Council,Centre for Materials Science,Queensland University of Technologythe Supported by the Fundamental Research Funds for the Central Universities。
文摘Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Ministry of Science and ICT(MSIT)(RS-2023-00251283,and 2022M3D1A2083618)by the Ministry of Education(2020R1A6A1A03040516).
文摘Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices.
基金supported by the National Natural Science Foundation of China(Nos.12005289 and 52071331)the National Key R&D Program of China(No.2019YFA0210000)the State Key Laboratory of Nuclear Detection and Electronics,University of Science and Technology of China(No.SKLPDE-KF-202316)。
文摘In this study,the interactions between a Ga-based liquid metal,GaInSn,and several metal materials,including pure metals(Ni and Ti)and alloys(316H stainless steel(SS)and GH3535),at 650℃were investigated.The aim was to evaluate the corrosion performance and select a suitable candidate material for use as a molten salt manometer diaphragm in thermal energy storage systems.The results indicated that the alloys(316H SS and GH3535)exhibited less corrosion than pure metals(Ni and Ti)in liquid GaInSn.Ga-rich binary intermetallic compounds were found to form on the surfaces of all the tested metal materials exposed to liquid GaInSn,as a result of the decomposition of liquid GaInSn and its reaction with the constituent elements of the metal materials.The corrosion mechanism for all the tested materials exposed to liquid GaInSn was also investigated and proposed,which may aid in selecting the optimal candidate material when liquid GaInSn is used as the pressure-sensing medium.
基金Supported by Youth Elite Project of CNNC and Modular HTGR Super-critical Power Generation Technology Collaborative Project between CNNC and Tsinghua University Project of China(Grant No.ZHJTIZYFGWD20201).
文摘For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location.
基金supported by the National Key Research and Development Programs(2021YFB2400400)Major Science and Technology Innovation Project of Hunan Province(2020GK10102020GK1014-4)+7 种基金National Natural Science Foundation of China(32201162)the 70th general grant of China Postdoctoral Science Foundation(2021M702947)Natural Science Foundation of Henan(232300420404)Key Scientific and Technological Project of Henan Province(232102320290,232102311156)Key Research Project Plan for Higher Education Institutions in Henan Province(24A150009,23B430011)Doctor Foundation of Henan University of Engineering(D2022002)the Science and Technology Innovation Program of Hunan Province(2023RC3154)the scientific research projects of Education Department of Hunan Province(23A0188)。
文摘Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and the incompatibility between electrode and electrolytes lead to the deterioration of electrochemical performance of AZMBs during the cycling.The critical point to achieve the stable cycling of AZMBs is to properly regulate the zinc ion solvated structure and transfer behavior between metallic Zn anode and electrolyte.In recent years,numerous achievements have been made to resolve the formation of Zn dendrite and interface incompatible issues faced by AZMBs via optimizing the sheath structure and transport capability of zinc ions at electrode-electrolyte interface.In this review,the challenges for metallic Zn anode and electrode-electrolyte interface in AZMBs including dendrite formation and interface characteristics are presented.Following the influences of different strategies involving designing advanced electrode structu re,artificial solid electrolyte interphase(SEI)on Zn anode and electrolyte engineering to regulate zinc ion solvated sheath structure and transport behavior are summarized and discussed.Finally,the perspectives for the future development of design strategies for dendrite-free Zn metal anode and long lifespan AZMBs are also given.
基金This work is supported by the Technologies R&D Program of Huzhou City(No.2022JB01)the Key Research and Development Program of Zhejiang Province(No.2023C01127)the Highstar Corporation HSD20210118.
文摘The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal batteries(LMBs),with their ultralow reduction potential and high theoretical capacity,are widely regarded as the most promising technical pathway for achieving high energy density batteries.In this review,we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs.Furthermore,we propose improved strategies involving interface engineering,3D current collector design,electrolyte optimization,separator modification,application of alloyed anodes,and external field regulation to address these challenges.The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them.This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes.Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface,leading to increased interface inhomogeneity—a critical factor contributing to failure in all-solidstate lithium metal batteries.Based on recent research works,this perspective highlights the current status of research on developing high-performance LMBs.
基金The authors acknowledge funding from National Natural Science Foundation of China(52302307)Shaanxi Province(2023-ZDLGY-24,2023-JC-QN-0473)+2 种基金project funded by China Postdoctoral Science Foundation(2023MD734210)the Open Foundation of State Key Laboratory for Advanced Metals and Materials(2022-Z01)Shaanxi Provincial Department of Education industrialization project(21JC018).
文摘Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping,bimetallic/bi-anionic TMCs,and TMCs-based heterostructure composites.It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band,d/p-band center,electron filling,and valence state.Moreover,the elec-tronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity,electron filling,and ion radius,resulting in electron redistribution,bonds reconstruction,induced vacancies due to the electronic interaction and changed crystal structure such as lat-tice spacing and lattice distortion.Different from the aforementioned two strategies,heterostructures are constructed by two types of TMCs with different Fermi energy levels,which causes built-in electric field and electrons transfer through the interface,and induces electron redistribution and arranged local atoms to regulate the electronic structure.Additionally,the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out.It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries.
基金the financial support from the National Natural Science Foundation of China (52125301 and 52203123)the Fundamental Research Funds for the Central Universitiespartially sponsored by the Double First-Class Construction Funds of Sichuan University。
文摘The development of a durable metallic coating on diverse substrates is both intriguing and challenging,particularly in the research of metal-conductive materials for applications such as batteries,soft electronics,and beyond.Herein,by learning from the pencil-writing process,a facile solid-ink rubbing technology(SIR-tech)is invented to address the above challenge.The solid-ink is exampled by rational combination of liquid metal and graphite particles.By harnessing the synergistic effects between rubbing and adhesion,controllable metallic skin is successfully formed onto metals,woods,ceramics,and plastics without limitation in size and shape.Moreover,outperforming pure liquid-metal coating,the composite metallic skin by SIR-tech is very robust due to the self-lamination of graphite nanoplate exfoliated by liquid-metal rubbing.The critical factors controlling the structures-properties of the composite metallic skin have been systematically investigated as well.For applications,the SIR-tech is demonstrated to fabricate high-performance composite current collectors for next-generation batteries without traditional metal foils.Meanwhile,advanced skin-electrodes are further demonstrated for stable triboelectricity generation even under temperature fluctuation from-196 to 120℃.This facile and highly-flexible SIR-tech may work as a powerful platform for the studies on functional coatings by liquid metals and beyond.
基金the National Natural Science Foun-dation of China(Grant Nos.12204074,12222402,92365101,and 12347101)the Natural Science Foundation of Chong-ging(Grant No.CSTB2023NSCQ-JQX0024).
文摘The realization of 100%polarized topologicalWeyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications.Here,we theoretically investigate the electronic and topological properties of the zinc-blende compound VAs,which was deemed as a half-metallic ferromagnet related to dynamic correlations.Based on the combination of density functional theory and dynamical mean field theory,we uncover that the half-metallic ferromagnet VAs exhibits attractive Weyl semimetallic behaviors which are very close to the Fermi level in the DFT+U regime with effect U values ranging from 1.5 eV to 2.5 eV.Meanwhile,we also investigate the magnetization-dependent topological properties;the results show that the change of magnetization directions only slightly affects the positions of Weyl points,which is attributed to the weak spin–orbital coupling effects.The topological surface states of VAs projected on semi-infinite(001)and(111)surfaces are investigated.The Fermi arcs of all Weyl points are clearly visible on the projected Fermi surfaces.Our findings suggest that VAs is a fully spin-polarized Weyl semimetal with many-body correlated effects in the effective U values range from 1.5 eV to 2.5 eV.
基金supported by the National Natural Science Foundation of China(Nos.21975087,22008082)。
文摘Lithium metal batteries(LMBs) promise energy density over 400 Wh kg^(-1).However,they suffer severe electrochemical performance deterioration at sub-zero temperatures.Such failure behavior highly correlates to inferior lithium metal anode(LMA) compatibility and sluggish Li^(+) desolvation.Here,we demonstrate that cyclopentylmethyl ether(CPME) based diluted high-concentration electrolyte(DHCE)enables-60℃ LMBs operation.By leveraging the loose coordination between Li^(+) and CPME,such developed electrolyte boosts the formation of ion clusters to derive anion-dominant interfacial chemistry for enhancing LMA compatibility and greatly accelerates Li^(+) desolvation kinetics.The resulting electrolyte demonstrates high Coulombic efficiencies(CE),providing over 99.5%,99.1%,98.5% and 95% at 25,-20,-40,and-60℃respectively.The assembled Li-S battery exhibits remarkable cyclic stability in-20,and-40℃ at 0.2 C charging and 0.5 C discharging.Even at-60℃,Li-S cell with this designed electrolyte retains> 70% of the initial capacity over 170 cycles.Besides,lithium metal coin cell and pouch cell with10 mg cm^(-2) high S cathode loading exhibit cycling stability at-20℃.This work offers an opportunity for rational designing electrolytes toward low temperature LMBs.
基金supported by the National Natural Science Foundation of China(22205209,52202373 and U21A200972)China Postdoctoral Science Foundation(2022M722867)Key Research Project of Higher Education Institutions in Henan Province(23A530001)。
文摘The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clusters via the metal-vacancy restraint mechanism,which can precisely regulate the bonding and valence state of heterometal atoms doped in 2D molybdenum disulfide.The unsaturated valence state of heterometal Pt and Ru cluster atoms form a spatial coordination structure with Pt–S and Ru–O–S as catalytically active sites.Among them,the strong binding energy of negatively charged suspended S and O sites for H+,as well as the weak adsorption of positively charged unsaturated heterometal atoms for H*,reduces the energy barrier of the hydrogen evolution reaction proved by theoretical calculation.Whereupon,the electrocatalytic hydrogen evolution performance is markedly improved by the ensemble effect of unsaturated heterometal atoms and highlighted with an overpotential of 84 mV and Tafel slope of 68.5 mV dec^(−1).In brief,this metal vacancy-induced valence state regulation of heterometal can manipulate the coordination structure and catalytic activity of heterometal atoms doped in the 2D atomic lattice but not limited to 2D nanomaterials.
基金supported by Science and Technology Planning Project of Guangdong Province,2023B1212060048.
文摘Copper possesses very strong chacophile properties,but under the conditions found in meteorites,its behavior is like that of siderophile elements.The Suizhou meteorite is a highly shocked L6 chondrite.Troilite and taenite are considered the main primary carrier of copper in this meteorite,and the post-shock thermal episode is considered the main reason that elemental Cu migrates from its original host phase and forms metallic grains.The Suizhou meteorite contains a few very thin shock melt veins.The occurrence and behavior of metallic copper in this meteorite were studied by optical microscopic examination,electron microprobe analyses,and high-resolution X-ray elemental intensity mapping.Our results show that metallic copper is abundant in the Suizhou chondritic rock.Metallic copper grains adjacent to small troilite grains inside FeNi metal are the most common occurrence,and those at the FeNi metal–troilite interface are the second most common case.The metallic copper grains occurring at the interface of FeNi metal/troililte and silicate are rather rare.Metallic copper grains are not observed within the Suizhou shock veins,Instead,Cu in elemental form is transferred through shock metamorphism into FeNi metal+troilite intergrowths.Four diff erent occurrence types of Cu in the FeNi metal+troilite intergrowths have been identifi ed:the concentrations of Cu in the FeNi+FeS intergrowths for four occurrence types are rather close,we estimate it might be lower than 1 wt%.
基金supported by the International Collaboration Program of Jilin Provincial Department of Science and Technology,China(20230402051GH)the National Natural Science Foundation of China(51932003,51902050)+2 种基金the Open Project Program of Key Laboratory of Preparation and Application of Environmental friendly Materials(Jilin Normal University)of Ministry of China(2021006)the Fundamental Research Funds for the Central Universities JLU“Double-First Class”Discipline for Materials Science&Engineering。
文摘Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite new,fundamental issues raise regarding the energy storage mechanism and other aspects affecting electrochemical performance.Severe volume expansion,low intrinsic conductivity and slow ion diffusion kinetics jeopardize the performance of metal tellurides,so that rational design and engineering are crucial to circumvent these disadvantages.Herein,this review provides an in-depth discussion of recent investigations and progresses of metal tellurides,beginning with a critical discussion on the energy storage mechanisms of metal tellurides in various MBs.In the following,recent design and engineering strategies of metal tellurides,including morphology engineering,compositing,defect engineering and heterostructure construction,for high-performance MBs are summarized.The primary focus is to present a comprehensive understanding of the structural evolution based on the mechanism and corresponding effects of dimension control,composition,electron configuration and structural complexity on the electrochemical performance.In closing,outlooks and prospects for future development of metal tellurides are proposed.This work also highlights the promising directions of design and engineering strategies of metal tellurides with high performance and low cost.
基金financially supported by the National Key Research and Development Program of China(No.2021YFB2400300)the IPE Talent Start-up Program of Institute of Process Engineering of Chinese Academy of Sciences(Grant No.E0293507)。
文摘The absence of control over carriers transport during electrochemical cycling,accompanied by the deterioration of the solid electrolyte interphase(SEI)and the growth of lithium dendrites,has hindered the development of lithium metal batteries.Herein,a separator complexion consisting of polyacrylonitrile(PAN)nanofiber and MIL-101(Cr)particles prepared by electrospinning is proposed to bind the anions from the electrolyte utilizing abundant effective open metal sites in the MIL-101(Cr)particles to modulate the transport of non-effective carriers.The binding effect of the PANM separator promotes uniform lithium metal deposition and enhances the stability of the SEI layer and long cycling stability of ultra-high nickel layered oxide cathodes.Taking PANM as the Li||NCM96 separator enables high-voltage cycling stability,maintaining 72%capacity retention after 800 cycles at a charging and discharging rate of 0.2 C at a cut-off voltage of 4.5 V and 0°C.Meanwhile,the excellent high-rate performance delivers a specific capacity of 156.3 mA h g^(-1) at 10 C.In addition,outstanding cycling performance is realized from−20 to 60°C.The separator engineering facilitates the electrochemical performance of lithium metal batteries and enlightens a facile and promising strategy to develop fast charge/discharge over a wide range of temperatures.
基金supported by the National Natural Science Foundation of China(No.21501015)the Hunan Provincial Natural Science Foundation,China(No.2022JJ30604)Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,China(No.2022CL01)。
文摘A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling.
基金funding from the NATO Agency Science for Peace and Security (#G5787)Ballistic investigations were co-financed by Military University of Technology in Warsaw under research project UGB 829/2023/WATSeparate works made in G.V.Kurdyumov Institute for Metal Physics of N.A.S.of Ukraine were partially financially supported by N.A.S.of Ukraine within the frames of project#III09-18。
文摘Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.
基金the National Natural Science Foundation of China(12102328)for supporting this work。
文摘Owing to the utilization of lithium metal as anode with the ultrahigh theoretical capacity density of 3860 mA h g^(-1)and oxide-based ceramic solid-state electrolytes(SE),e.g.,garnet-type Li7La_(3)Zr_(2)O_(12)(LLZO),all-state-state lithium metal batteries(ASLMBs)have been widely accepted as the promising alternatives for providing the satisfactory energy density and safety.However,its applications are still challenged by plenty of technical and scientific issues.In this contribution,the co-sintering temperature at 500℃is proved as a compromise method to fabricate the composite cathode with structural integrity and declined capacity fading of LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM).On the other hand,it tends to form weaker grain boundary(GB)inside polycrystalline LLZO at inadequate sintering temperature for LLZO,which can induce the intergranular failure of SE during the growth of Li filament inside the unavoidable defect on the interface of SE.Therefore,increasing the strength of GB,refining the grain to 0.4μm,and precluding the interfacial defect are suggested to postpone the electro-chemo-mechanical failure of SE with weak GB.Moreover,the advanced sintering techniques to lower the co-sintering temperature for both NCM-LLZO composite cathode and LLZO SE can be posted out to realize the viability of state-of-the-art ASLMBs with higher energy density as well as the guaranteed safety.
基金the Basic Research Project(C123000,C210200,C310200,&C421000)of the Korea Basic Science Institute(KBSI)funded by the Korea Ministry of Science and ICT(MSIT)the Technology Development Program to Solve Climate Changes through the National Research Foundation of Korea(NRF)funded by MSIT(NRF-2021M1A2A2038141).O.H.Han thanks to Prof.I.S.Yang at Ewha Womans University for insightful discussion.
文摘Despite the proficiency of lithium(Li)-7 NMR spectroscopy in delineating the physical and chemical states of Li metal electrodes,challenges in specimen preparation and interpretation impede its progress.In this study,we conducted a comprehensive postmortem analysis utilizing ^(7)Li NMR,employing a stan-dard magic angle spinning probe to examine protective-layer coated Li metal electrodes and LiAg alloy electrodes against bare Li metal electrodes within Li metal batteries(LMBs).Our investigation explores the effects of sample burrs,alignment with the magnetic field,the existence of liquid electrolytes,and precycling on the ^(7)Li NMR signals.Through contrasting NMR spectra before and after cycling,we identi-fied alterations in Li^(0) and Li^(+) signals attributable to the degradation of the Li metal electrode.Our NMR analyses decisively demonstrate the efficacy of the protective layer in mitigating dendrite and solid elec-trolyte interphase formation.Moreover,we noted that Li*ions near the Li metal surface exhibit magnetic susceptibility anisotropy,revealing a novel approach to studying diamagnetic species on Li metal elec-trodes in LMBs.This study provides valuable insights and practical guidelines for characterizing distinct lithium states within LMBs.
基金the support from the CIPHER Project(IIID 2018-008)funded by the Commission on Higher Education-Philippine California Advanced Research Institutes(CHED-PCARI)。
文摘Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.
基金The authors have read the PRISMA 2009 Checklist,and the manuscript was prepared and revised according to the PRISMA 2009 Checklist.
文摘BACKGROUND Endoscopic ultrasound-guided biliary drainage using electrocautery-enhanced(ECE)delivery of lumen-apposing metal stent(LAMS)is gradually being re-cognized as a viable palliative technique for malignant biliary obstruction after endoscopic retrograde cholangiopancreatography(ERCP)failure.However,most of the studies that have assessed its efficacy and safety were small and hetero-geneous.Prior meta-analyses of six or fewer studies that were published 2 years ago were therefore underpowered to yield convincing evidence.AIM To update the efficacy and safety of ECE-LAMS for treatment of biliary ob-struction after ERCP failure.METHODS We searched PubMed,EMBASE,and Scopus databases from the inception of the ECE technique to May 13,2022.Primary outcome measure was pooled technical success rate,and secondary outcomes were pooled rates of clinical success,re-intervention,and adverse events.Meta-analysis was performed using a random-effects model following Freeman-Tukey double-arcsine transformation in R soft-ware(version 4.1.3).RESULTS Fourteen eligible studies involving 620 participants were ultimately included.The pooled rate of technical success was 96.7%,and clinical success was 91.0%.Adverse events were reported in 17.5%of patients.Overall reinter-vention rate was 7.3%.Subgroup analyses showed results were generally consistent.CONCLUSION ECE-LAMS has favorable success with acceptable adverse events in relieving biliary obstruction when ERCP is impossible.The consistency of results across most subgroups suggested that this is a generalizable approach.