Reticulated polyurethane was chosen as the preceramic material for preparing the porous preform using the replication process. The immersing and sintering processes were each performed twice for fabricating a high-por...Reticulated polyurethane was chosen as the preceramic material for preparing the porous preform using the replication process. The immersing and sintering processes were each performed twice for fabricating a high-porosity and super-strong skeleton. The aluminum magnesium matrix composites reinforced with three-dimensional network structure were prepared using the infiltration technique by pressure assisting and vacuum driving. Light interfacial reactions have played a profitable role in most of the ceramic-metal systems. The metal matrix composites interpenetrated with the ceramic phase have a higher wear resistance than the metal matrix phase. The volume fraction of ceramic reinforcement has a significant effect on the abrasive wear, and the wear rate can be decreased with the increase of the volume fraction of reinforcement.展开更多
Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage ...Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes,and to minimize the electrolyte thickness to achieve highenergy-density of SSLMBs.Herein,we develop an ultrathin(12.6μm)asymmetric composite solid-state electrolyte with ultralight areal density(1.69 mg cm^(−2))for SSLMBs.The electrolyte combining a garnet(LLZO)layer and a metal organic framework(MOF)layer,which are fabricated on both sides of the polyethylene(PE)separator separately by tape casting.The PE separator endows the electrolyte with flexibility and excellent mechanical properties.The LLZO layer on the cathode side ensures high chemical stability at high voltage.The MOF layer on the anode side achieves a stable electric field and uniform Li flux,thus promoting uniform Li^(+)deposition.Thanks to the well-designed structure,the Li symmetric battery exhibits an ultralong cycle life(5000 h),and high-voltage SSLMBs achieve stable cycle performance.The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg^(−1)/773.1 Wh L^(−1).This simple operation allows for large-scale preparation,and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs.展开更多
Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering th...Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte.Consequently,nearly all lithium ions within the SEI film are replaced by transition metal ions,resulting in an increase in interphacial impedance and a decrease in stability.Herein,we demonstrate that the SEI film,constructed by fluoroethylene carbonate(FEC)additive rich in crystalline Li F,effectively inhibits the undesired Li^(+)/Co^(2+)ion exchange reaction,thereby suppressing the deposition of cobalt compounds and metallic cobalt.Furthermore,the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode.Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions,providing valuable guidance for designing next-generation electrolytes.展开更多
The effect of TiO;,ZrO;and Na;AlF;ultrafine powders on the fine structure and the phase composition of Fe–14Mn–1.2C steel was investigated.The introduction of the ultrafine powders into the melt influenced the grain...The effect of TiO;,ZrO;and Na;AlF;ultrafine powders on the fine structure and the phase composition of Fe–14Mn–1.2C steel was investigated.The introduction of the ultrafine powders into the melt influenced the grain size,the quantity,and the character of distribution of nonmetallic inclusions in the railroad frogs.The microstructure of castings was improved significantly because of the refinement of the grain structure and an increase of the grain-boundary area.After the modifying mixture was introduced into the melt,either the microtwins of one or two intersecting systems or the precipitations of ε-martensite of different types,or simultaneously the microtwins and wafers of ε-martensite,were present in each grain.展开更多
Results of a series of experiments(on the adsorption of divalent metal ions by dried alginic acid, Na and Ca alginates of different composition and block structure) conducted in this systematic study of the effects of...Results of a series of experiments(on the adsorption of divalent metal ions by dried alginic acid, Na and Ca alginates of different composition and block structure) conducted in this systematic study of the effects of the composition and structure of alginates on the static adsorption equilibrium of divalent metal ions indicate that the properties of alginate adsorption to divalent metal ions are highly different, depending not only on the cations used, but also on the form and structure of the alginates. There is close correlation between the adsorption properties and the structure of the alginates. The selectivity coefficient of Na alginate for Cd-Sr ion exchange tends to increase with the increase of the M/G ratio in alginate, whereas the adsorption capacity of Ca alginate for Cu2+ ion decrease with the increase of the G-block or the average length of the G-block (NG) and the total adsorption capacity of alginic acid is found to vary in the same order as the FMM(diad frequency) in alginate in the mixed solution of Sr2+, Ba2+ and Cd2+.展开更多
The influences of the thermomechanical processing, including the solidification conditions, the cold deformation and the intermediate annealing treatment, on the structure and properties of the Cu-10Ag alloy in situ c...The influences of the thermomechanical processing, including the solidification conditions, the cold deformation and the intermediate annealing treatment, on the structure and properties of the Cu-10Ag alloy in situ composite were studied in this paper. The cast structure and the structural changes in the cold deformation and intermediate annealing process were observed. The properties including the ultimate tensile strength (UTS) and the electrical conductivity were determined. A two-stage strain strengthening effect for the Cu-10Ag alloy in situ filamentary composite was observed. The factors influencing the UTS and conductivity were discussed. The solidification conditions in the range of 10-1000 K/s cooling rates and the intermediate heat treatment showed obviously influence on the structure and properties on the Cu-10Ag alloy in situ filamentary composite. The typical properties of the Cu-Ag alloy in situ filamentary composites through thermomechanical processing were reported.展开更多
The utilization of all-solid-state electrolytes is considered to be an effective way to enhance the safety performance of lithium metal batteries.However,the low ionic conductivity and poor interface compatibility gre...The utilization of all-solid-state electrolytes is considered to be an effective way to enhance the safety performance of lithium metal batteries.However,the low ionic conductivity and poor interface compatibility greatly restrict the development of all-solid-state battery.In this study,a composite electrolyte combining the electrospun polyamide 6(PA6)nanofiber membrane with hierarchical structure and the polyethylene oxide(PEO)polymer is investigated.The introduction of PA6 nanofiber membrane can effectively reduce the crystallinity of the polymer,so that the ionic conductivity of the electrolyte can be enhanced.Moreover,it is found that the presence of finely branched fibers in the hierarchical structure PA6 membrane allows the polar functional groups(C=O and N-H bonds)to be fully exposed,which provides sufficient functional sites for lithium ion transport and helps to regulate the uniform deposition of lithium metal.Moreover,the hierarchical structure can enhance the mechanical strength(9.2 MPa)of the electrolyte,thereby effectively improving the safety and cycle stability of the battery.The prepared Li/Li symmetric battery can be stably cycled for 1500 h under 0.3 mA cm^(-2) and 60℃.This study demonstrates that the prepared electrolyte has excellent application prospects in the next generation all-solid-state lithium metal batteries.展开更多
This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initi...This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initially, porous Ti structures are produced using the LMD process, followed by immersion in a molten Mg-3Al(wt%) metal. Due to the higher thermodynamic miscibility of Al with Ti compared to Mg, the concentration of Al in the Ti matrix increases as the immersion time increases. This results in a sequential phase transition within the Ti matrix: α-Ti → Ti_(3)Al → Ti Al. The phase transition considerably affects the hardness and strength of the composite material,with the Mg-Ti_(3)Al-Ti Al composite exhibiting a maximum hardness nearly twice as high as that of the conventional Mg-Ti composite. This innovative process holds potential for the development of various bicontinuous metal-intermetallic composites.展开更多
A fully dense carbon nanotubes (CNTs) reinforced AlSi matrix composite with the multiscale nacre-like architecture was designed and successfully realized by flake powder metallurgy followed by cold spraying (CS). The ...A fully dense carbon nanotubes (CNTs) reinforced AlSi matrix composite with the multiscale nacre-like architecture was designed and successfully realized by flake powder metallurgy followed by cold spraying (CS). The nanolaminated and ultrafine-grained structure initially created in the CNT/AlSi flaky powder was perfectly conserved, due to the typical ‘cold’ feature of CS. As discussed based on finite element analysis and single splat observation, self-alignment behavior of the flaky powders during impact also allowed the formation of the microlaminated structure. Hence, the scalable CS technique opens a new avenue for bioinspired material design and fabrication with complex shape.展开更多
Flexible biosensors with high accuracy and reliable operation in detecting pH and uric acid levels in body fluids are fabricated using well-engineered metaldoped porous carbon as electrode material.The gold nanopartic...Flexible biosensors with high accuracy and reliable operation in detecting pH and uric acid levels in body fluids are fabricated using well-engineered metaldoped porous carbon as electrode material.The gold nanoparticles@N-doped carbon in situ are prepared using wool keratin as both a novel carbon precursor and a stabilizer.The conducting electrode material is fabricated at 500℃ under customized parameters,which mimics A-B type(two different repeating units) polymeric material and displays excellent deprotonation performance(pH sensitivity).The obtained pH sensor exhibits high pH sensitivity of 57 mV/pH unit and insignificant relative standard deviation of 0.088%.Conversely,the composite carbon material with sp^2 structure prepared at 700℃ is doped with nitrogen and gold nanoparticles,which exhibits good conductivity and electrocatalytic activity for uric acid oxidation.The uric acid sensor has linear response over a range of 1-150 μM and a limit of detection 0.1 μM.These results will provide new avenues where biological material will be the best start,which can be useful to target contradictory applications through molecular engineering at mesoscale.展开更多
Commercial3D reticular nickel foam and its composite structure were investigated on the sound absorption at200-2000Hz.The absorption performance of foam plates1?5layers(1-layer thickness:2.3mm;porosity:89%;average por...Commercial3D reticular nickel foam and its composite structure were investigated on the sound absorption at200-2000Hz.The absorption performance of foam plates1?5layers(1-layer thickness:2.3mm;porosity:89%;average pore-diameter:0.57mm)was found to be poor,and could be improved by adding backed cavum or front perforated thin sheet.The absorption coefficient could reach about0.4at1000-1600Hz for the composite structure of5-layer foam with a backed5mm-thick cavum,and even0.68at about1000Hz for that of2-layer foam with the same cavum and a perforated plate closely in front of the foam.展开更多
The deformation process in the material volume under high-pressure torsion(HPT)was studied.As a model object for the observation of deformation process,we used a composite comprising a bronze matrix and niobium filame...The deformation process in the material volume under high-pressure torsion(HPT)was studied.As a model object for the observation of deformation process,we used a composite comprising a bronze matrix and niobium filaments.The arrangements of the niobium filaments in the bronze matrix and their size have regular geometry.This allows us to monitor and measure the displacement of the niobium filaments in the sample volume,which results from HTP.The bronze/niobium composite samples were subjected to HPT at room temperature and 6 GPa,and the number of revolutions N=1/4,1/2,1,2,3 and 5.It was shown that HPT with revolution number of 1 leads to the 360° rotation of entire sample volume without sample slippage.Similar deformational behavior during HPT can be expected for high-ductility metallic materials.The increase in the number of revolutions more than 2 leads to twisting the niobium filaments in the sample volume and the formation of 'vortex' multilayer structure.The mechanisms for the formation of such structures were discussed.展开更多
Based on the biological prototype characteristics of shark’s gill jet orifice,the flexible driving characteristics of ionic exchange polymer metal composites(IPMC)artificial muscle materials and the use of sleeve fle...Based on the biological prototype characteristics of shark’s gill jet orifice,the flexible driving characteristics of ionic exchange polymer metal composites(IPMC)artificial muscle materials and the use of sleeve flexible connector,the IPMC linear driving unit simulation model is built and the IPMC material-driving dynamic control structure of bionic gill unit is developed.Meanwhile,through the stress analysis of bionic gill plate and the motion simulation of bionic gill unit,it is verified that various dynamic control and active control of the jet orifice under the condition of different mainstream field velocities will be taken by using IPMC material-driving.Moreover,the large-deflection deformation of bionic gill plate under dynamic pressure and the comparative analysis with that of a rigid gill plate is studied,leading to the achievement of approximate revised modifier from real value to theoretical value of the displacement control of IPMC.展开更多
Powder charges of micron-size Ni and Al2O3were utilized to deposit nano-structured Ni-Al2O3composite coatings on analuminum plate fixed at the top end of a milling vial using a planetary ball mill.Composite coatings w...Powder charges of micron-size Ni and Al2O3were utilized to deposit nano-structured Ni-Al2O3composite coatings on analuminum plate fixed at the top end of a milling vial using a planetary ball mill.Composite coatings were fabricated using powdermixtures with a wide range of Ni/Al2O3mass ratio varying from1:1to plain Ni.XRD,SEM and TEM techniques were employed tostudy the structural characteristics of the coatings.It was found that the composition of the starting mixture strongly affects the Al2O3content and the microstructure of the final coating.Mixtures containing higher contents of Al2O3yield higher volume fractions of theAl2O3particles in the coating.Though Ni-Al2O3composite coatings with about50%of Al2O3particles were successfully deposited,well-compacted and free of cracks and/or voids coatings included less than20%(volume fraction)of Al2O3particles which weredeposited from powder mixtures with Ni/Al2O3mass ratios of4:1or higher.Moreover,mechanical and metallurgical bondings arethe main mechanisms of the adhesion of the coating to the Al substrate.Finally,functionally graded composite coatings withnoticeable compaction and integrity were produced by deposition of two separate layers under identical coating conditions.展开更多
We report a correlative study of strain distribution and grain structure in the Al matrix of a hot-extruded SiC particulate-reinforced Al composite(SiC_p/2014 Al). Finite element method(FEM) simulation and microstruct...We report a correlative study of strain distribution and grain structure in the Al matrix of a hot-extruded SiC particulate-reinforced Al composite(SiC_p/2014 Al). Finite element method(FEM) simulation and microstructure characterization indicate that the grain structure of the Al matrix is affected by the interparticulate strain distribution in the matrix during the process. Both electron-backscattered diffraction(EBSD) and selected-area electron diffraction(SAED) indicated localized misorientation in the Al matrix after hot extrusion. Scanning transmission electron microscopy(STEM) revealed fine and recrystallized grains adjacent to the Si C particulate and elongated grains between the particulates. This result is explained in terms of recrystallization under an interparticulate strain distribution during the hot extrusion process.展开更多
In this work,a new ZnO/CoNiO_(2)/CoO/C metal oxides composite is prepared by cost-effective hydrothermal method coupled with annealing process under N_(2) atmosphere.Notably,the oxidation-defect annealing environment ...In this work,a new ZnO/CoNiO_(2)/CoO/C metal oxides composite is prepared by cost-effective hydrothermal method coupled with annealing process under N_(2) atmosphere.Notably,the oxidation-defect annealing environment is conducive to both morphology and component of the composite,which flower-like ZnO/CoNiO_(2)/CoO/C is obtained.Benefited from good chemical stability of ZnO,high energy capacity of CoNiO_(2) and CoO and good conductivity of C,the as-prepared sample shows promising electrochemical behavior,including the specific capacity of 1435 C·g^(-1) at 1 A·g^(-1),capacity retention of 87.3%at 20 A·g^(-1),and cycling stability of 90.5%for 3000 cycles at 5 A·g^(-1),respectively.Furthermore,the prepared ZnO/CoNiO_(2)/CoO/C/NF//AC aqueous hybrid supercapacitors device delivers the best specific energy of 55.9 W·h·kg^(-1) at 850 W·kg^(-1).The results reflect that the as-prepared ZnO/CoNiO_(2)/CoO/C microflowers are considered as high performance electrode materials for supercapacitor,and the strategy mentioned in this paper is benefit to prepare mixed metal oxides composite for energy conversion and storage.展开更多
α-Fe_2O_3 nanocrystal was encapsulated by a block-copolymer, hydroxylated poly (styrene-b- butadiene-styrene) (HO-SBS) to fabricate composite microspheres with α-Fe_2O_3 cores and HOSBS shell. Its film fabricated o...α-Fe_2O_3 nanocrystal was encapsulated by a block-copolymer, hydroxylated poly (styrene-b- butadiene-styrene) (HO-SBS) to fabricate composite microspheres with α-Fe_2O_3 cores and HOSBS shell. Its film fabricated on n-Si wafer acts as the insulator layer in the metal-insulator- semiconductor(MIS) structure. The capacitance-voltage (C-V) properties were measured to characterize the composite particulate films.展开更多
The article considers one of the possible approaches to the solution of an urgent issue of metal consumption reduction, increase of operating life and maximum operating temperature as well as reduction of irrecoverabl...The article considers one of the possible approaches to the solution of an urgent issue of metal consumption reduction, increase of operating life and maximum operating temperature as well as reduction of irrecoverable losses of platinum products and alloys when operating under high temperature conditions, particularly for glassblowing and single crystal growing crucibles. A two-layered composite material based on platinum-group metals and corundum plasma ceramics is thoroughly investigated. A successful experience of crucibles exploitation, designed for production of high temperature optical glasses from the composite and results of the research on composite material specimens are described.展开更多
A bulk metal/ceramic composite material with a honeycomb-like micro-cell structure has been prepared by sintering the spherical Al90Mn9Ce1 alloy powders clad by Al2O3 nano-powder with the spark plasma sintering (SPS) ...A bulk metal/ceramic composite material with a honeycomb-like micro-cell structure has been prepared by sintering the spherical Al90Mn9Ce1 alloy powders clad by Al2O3 nano-powder with the spark plasma sintering (SPS) technique. The as-prepared material consists of Al90Mn9Ce1 alloy cell and closed Al2O3 ceramic cell wall. The diameter of the cells is about 20―40 μm, while a thickness of the cell wall is about 1―2 μm. The ultimate compressive strength of the as-sintered materials is about 514 MPa, while its fracture strain is up to about 0.65 %. This composite material might possess good anti-corrosion, thermal endurance and other potential properties due to its unique microstructure. The result shows that the Al90Mn9Ce1/Al2O3 composite powders can be sintered by spark plasma sintering technique despite the large difference in their sintering temperature. This work offers a way of designing and preparing metal/ceramic composite material with functional property.展开更多
A three-dimensional plasticity model was developed and applied to metal-intermetallic laminate composites containingphases of the L12 structure. A multi-scale approach that combined the methods of continuum mechanics ...A three-dimensional plasticity model was developed and applied to metal-intermetallic laminate composites containingphases of the L12 structure. A multi-scale approach that combined the methods of continuum mechanics and dislocationkinetics was used. This model takes account of the different mechanisms of self-locking superdislocations, the dislocationsand the dislocation walls' density storage for each type of layer at the micro-scale. At the meso-scale, the solutions to thedislocation kinetics equations, in the form of stress-strain curves, were used to create the properties of a three-dimensionalrepresentative element. The numerical simulation study of the macroscopic deformation was carried out with the finiteelement method using the dynamic model of continuum mechanics, which included the classical conservation laws,constitutive equations and the equation of state. It was shown that the simulation results generated using this model were ingood agreement with the mechanical tests conducted on the single crystals of the L12 structure. The model provides anexcellent description of the high-temperature plastic strain superlocalization effect of single crystal intermetallics of theLI2 structure. This paper describes the numerical results of the study of the tension and compression tests of metal-intermetallic laminate composites containing phases of the L12 structure. The model allows the description of the dis-tribution of the accumulated plastic strain inhomogeneities and is capable of predicting the strengthening properties andplastic behaviour of the metal-intermetallic laminate composites containing phases of the L12 structure.展开更多
基金This work was financially supported by the Natural Science Foundation of Shandong Province, China (Y2006F03).
文摘Reticulated polyurethane was chosen as the preceramic material for preparing the porous preform using the replication process. The immersing and sintering processes were each performed twice for fabricating a high-porosity and super-strong skeleton. The aluminum magnesium matrix composites reinforced with three-dimensional network structure were prepared using the infiltration technique by pressure assisting and vacuum driving. Light interfacial reactions have played a profitable role in most of the ceramic-metal systems. The metal matrix composites interpenetrated with the ceramic phase have a higher wear resistance than the metal matrix phase. The volume fraction of ceramic reinforcement has a significant effect on the abrasive wear, and the wear rate can be decreased with the increase of the volume fraction of reinforcement.
基金the National Natural Science Foundation of China(22178120)the China Postdoctoral Science Foundation(2022TQ0173,2023M731922,2022M720076,BX20220182,2023M731921,2023M731919,2023M741919).
文摘Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes,and to minimize the electrolyte thickness to achieve highenergy-density of SSLMBs.Herein,we develop an ultrathin(12.6μm)asymmetric composite solid-state electrolyte with ultralight areal density(1.69 mg cm^(−2))for SSLMBs.The electrolyte combining a garnet(LLZO)layer and a metal organic framework(MOF)layer,which are fabricated on both sides of the polyethylene(PE)separator separately by tape casting.The PE separator endows the electrolyte with flexibility and excellent mechanical properties.The LLZO layer on the cathode side ensures high chemical stability at high voltage.The MOF layer on the anode side achieves a stable electric field and uniform Li flux,thus promoting uniform Li^(+)deposition.Thanks to the well-designed structure,the Li symmetric battery exhibits an ultralong cycle life(5000 h),and high-voltage SSLMBs achieve stable cycle performance.The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg^(−1)/773.1 Wh L^(−1).This simple operation allows for large-scale preparation,and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs.
基金supported by the National Natural Science Foundation of China(21972049,21573080)。
文摘Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte.Consequently,nearly all lithium ions within the SEI film are replaced by transition metal ions,resulting in an increase in interphacial impedance and a decrease in stability.Herein,we demonstrate that the SEI film,constructed by fluoroethylene carbonate(FEC)additive rich in crystalline Li F,effectively inhibits the undesired Li^(+)/Co^(2+)ion exchange reaction,thereby suppressing the deposition of cobalt compounds and metallic cobalt.Furthermore,the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode.Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions,providing valuable guidance for designing next-generation electrolytes.
基金partly supported by the Russian Foundation for basic Researches(No.16-48-700198)the Tomsk State University competitiveness improvement programme
文摘The effect of TiO;,ZrO;and Na;AlF;ultrafine powders on the fine structure and the phase composition of Fe–14Mn–1.2C steel was investigated.The introduction of the ultrafine powders into the melt influenced the grain size,the quantity,and the character of distribution of nonmetallic inclusions in the railroad frogs.The microstructure of castings was improved significantly because of the refinement of the grain structure and an increase of the grain-boundary area.After the modifying mixture was introduced into the melt,either the microtwins of one or two intersecting systems or the precipitations of ε-martensite of different types,or simultaneously the microtwins and wafers of ε-martensite,were present in each grain.
基金Contribution No. 2166 from the Institute of Oceanology, Chinese Academy of Sciences
文摘Results of a series of experiments(on the adsorption of divalent metal ions by dried alginic acid, Na and Ca alginates of different composition and block structure) conducted in this systematic study of the effects of the composition and structure of alginates on the static adsorption equilibrium of divalent metal ions indicate that the properties of alginate adsorption to divalent metal ions are highly different, depending not only on the cations used, but also on the form and structure of the alginates. There is close correlation between the adsorption properties and the structure of the alginates. The selectivity coefficient of Na alginate for Cd-Sr ion exchange tends to increase with the increase of the M/G ratio in alginate, whereas the adsorption capacity of Ca alginate for Cu2+ ion decrease with the increase of the G-block or the average length of the G-block (NG) and the total adsorption capacity of alginic acid is found to vary in the same order as the FMM(diad frequency) in alginate in the mixed solution of Sr2+, Ba2+ and Cd2+.
文摘The influences of the thermomechanical processing, including the solidification conditions, the cold deformation and the intermediate annealing treatment, on the structure and properties of the Cu-10Ag alloy in situ composite were studied in this paper. The cast structure and the structural changes in the cold deformation and intermediate annealing process were observed. The properties including the ultimate tensile strength (UTS) and the electrical conductivity were determined. A two-stage strain strengthening effect for the Cu-10Ag alloy in situ filamentary composite was observed. The factors influencing the UTS and conductivity were discussed. The solidification conditions in the range of 10-1000 K/s cooling rates and the intermediate heat treatment showed obviously influence on the structure and properties on the Cu-10Ag alloy in situ filamentary composite. The typical properties of the Cu-Ag alloy in situ filamentary composites through thermomechanical processing were reported.
基金the National Natural Science Foundation of China(51973157,51673148 and 51678411),Chinathe China Postdoctoral Science Foundation Grant(2019 M651047),Chinathe Science and Technology Plans of Tianjin(No.17PTSYJC00040 and 18PTSYJC00180),China for the financial support。
文摘The utilization of all-solid-state electrolytes is considered to be an effective way to enhance the safety performance of lithium metal batteries.However,the low ionic conductivity and poor interface compatibility greatly restrict the development of all-solid-state battery.In this study,a composite electrolyte combining the electrospun polyamide 6(PA6)nanofiber membrane with hierarchical structure and the polyethylene oxide(PEO)polymer is investigated.The introduction of PA6 nanofiber membrane can effectively reduce the crystallinity of the polymer,so that the ionic conductivity of the electrolyte can be enhanced.Moreover,it is found that the presence of finely branched fibers in the hierarchical structure PA6 membrane allows the polar functional groups(C=O and N-H bonds)to be fully exposed,which provides sufficient functional sites for lithium ion transport and helps to regulate the uniform deposition of lithium metal.Moreover,the hierarchical structure can enhance the mechanical strength(9.2 MPa)of the electrolyte,thereby effectively improving the safety and cycle stability of the battery.The prepared Li/Li symmetric battery can be stably cycled for 1500 h under 0.3 mA cm^(-2) and 60℃.This study demonstrates that the prepared electrolyte has excellent application prospects in the next generation all-solid-state lithium metal batteries.
基金supported by the National Research Council of Science & Technology (NST) grant by the Korea Government (MSIT) (grant no.CRC23011-000)by the National Research Foundation of Korea (NRF) funded by the Ministry of Science,ICT,and Future Planning (MSIP,South Korea) (grant no.NRF-2021R1C1C1007645)。
文摘This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initially, porous Ti structures are produced using the LMD process, followed by immersion in a molten Mg-3Al(wt%) metal. Due to the higher thermodynamic miscibility of Al with Ti compared to Mg, the concentration of Al in the Ti matrix increases as the immersion time increases. This results in a sequential phase transition within the Ti matrix: α-Ti → Ti_(3)Al → Ti Al. The phase transition considerably affects the hardness and strength of the composite material,with the Mg-Ti_(3)Al-Ti Al composite exhibiting a maximum hardness nearly twice as high as that of the conventional Mg-Ti composite. This innovative process holds potential for the development of various bicontinuous metal-intermetallic composites.
基金financial support from China Scholarship Council for his Ph.D. projectThe TEM facility in Lille, France, is supported by the Conseil Regional du Nord-Pas de Calais and the European Regional Development Fund
文摘A fully dense carbon nanotubes (CNTs) reinforced AlSi matrix composite with the multiscale nacre-like architecture was designed and successfully realized by flake powder metallurgy followed by cold spraying (CS). The nanolaminated and ultrafine-grained structure initially created in the CNT/AlSi flaky powder was perfectly conserved, due to the typical ‘cold’ feature of CS. As discussed based on finite element analysis and single splat observation, self-alignment behavior of the flaky powders during impact also allowed the formation of the microlaminated structure. Hence, the scalable CS technique opens a new avenue for bioinspired material design and fabrication with complex shape.
基金supported by the National Natural Science Foundation of China(Grant Nos.51502253,U1405226,21503175,51773171,and 21705135)Natural Science Foundation of Guangdong Province(Grant No.2016A030310369)+5 种基金Natural Science Foundation of Fujian Province(Grant No.2017J01104)the Fundamental Research Funds for the Central Universities of China(Grant Nos.20720160127 and 20720180013)Doctoral Fund of the Ministry of Education(Grant No.20130121110018)NUS Ac RF Tier 1(Grant No.R-144-000-367-112)the “111” Project(Grant No.B16029)the 1000 Talents Program funding from the Xiamen University。
文摘Flexible biosensors with high accuracy and reliable operation in detecting pH and uric acid levels in body fluids are fabricated using well-engineered metaldoped porous carbon as electrode material.The gold nanoparticles@N-doped carbon in situ are prepared using wool keratin as both a novel carbon precursor and a stabilizer.The conducting electrode material is fabricated at 500℃ under customized parameters,which mimics A-B type(two different repeating units) polymeric material and displays excellent deprotonation performance(pH sensitivity).The obtained pH sensor exhibits high pH sensitivity of 57 mV/pH unit and insignificant relative standard deviation of 0.088%.Conversely,the composite carbon material with sp^2 structure prepared at 700℃ is doped with nitrogen and gold nanoparticles,which exhibits good conductivity and electrocatalytic activity for uric acid oxidation.The uric acid sensor has linear response over a range of 1-150 μM and a limit of detection 0.1 μM.These results will provide new avenues where biological material will be the best start,which can be useful to target contradictory applications through molecular engineering at mesoscale.
基金Project (C16) supported by the Testing Foundation of Beijing Normal University,China
文摘Commercial3D reticular nickel foam and its composite structure were investigated on the sound absorption at200-2000Hz.The absorption performance of foam plates1?5layers(1-layer thickness:2.3mm;porosity:89%;average pore-diameter:0.57mm)was found to be poor,and could be improved by adding backed cavum or front perforated thin sheet.The absorption coefficient could reach about0.4at1000-1600Hz for the composite structure of5-layer foam with a backed5mm-thick cavum,and even0.68at about1000Hz for that of2-layer foam with the same cavum and a perforated plate closely in front of the foam.
基金financial support from the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISi S” (No. K2-2019-008)
文摘The deformation process in the material volume under high-pressure torsion(HPT)was studied.As a model object for the observation of deformation process,we used a composite comprising a bronze matrix and niobium filaments.The arrangements of the niobium filaments in the bronze matrix and their size have regular geometry.This allows us to monitor and measure the displacement of the niobium filaments in the sample volume,which results from HTP.The bronze/niobium composite samples were subjected to HPT at room temperature and 6 GPa,and the number of revolutions N=1/4,1/2,1,2,3 and 5.It was shown that HPT with revolution number of 1 leads to the 360° rotation of entire sample volume without sample slippage.Similar deformational behavior during HPT can be expected for high-ductility metallic materials.The increase in the number of revolutions more than 2 leads to twisting the niobium filaments in the sample volume and the formation of 'vortex' multilayer structure.The mechanisms for the formation of such structures were discussed.
基金Project(51275102)supported by the National Natural Science Foundation of ChinaProject(HEUCF140713)supported by the Fundamental Research Funds for the Central Universities,China
文摘Based on the biological prototype characteristics of shark’s gill jet orifice,the flexible driving characteristics of ionic exchange polymer metal composites(IPMC)artificial muscle materials and the use of sleeve flexible connector,the IPMC linear driving unit simulation model is built and the IPMC material-driving dynamic control structure of bionic gill unit is developed.Meanwhile,through the stress analysis of bionic gill plate and the motion simulation of bionic gill unit,it is verified that various dynamic control and active control of the jet orifice under the condition of different mainstream field velocities will be taken by using IPMC material-driving.Moreover,the large-deflection deformation of bionic gill plate under dynamic pressure and the comparative analysis with that of a rigid gill plate is studied,leading to the achievement of approximate revised modifier from real value to theoretical value of the displacement control of IPMC.
文摘Powder charges of micron-size Ni and Al2O3were utilized to deposit nano-structured Ni-Al2O3composite coatings on analuminum plate fixed at the top end of a milling vial using a planetary ball mill.Composite coatings were fabricated using powdermixtures with a wide range of Ni/Al2O3mass ratio varying from1:1to plain Ni.XRD,SEM and TEM techniques were employed tostudy the structural characteristics of the coatings.It was found that the composition of the starting mixture strongly affects the Al2O3content and the microstructure of the final coating.Mixtures containing higher contents of Al2O3yield higher volume fractions of theAl2O3particles in the coating.Though Ni-Al2O3composite coatings with about50%of Al2O3particles were successfully deposited,well-compacted and free of cracks and/or voids coatings included less than20%(volume fraction)of Al2O3particles which weredeposited from powder mixtures with Ni/Al2O3mass ratios of4:1or higher.Moreover,mechanical and metallurgical bondings arethe main mechanisms of the adhesion of the coating to the Al substrate.Finally,functionally graded composite coatings withnoticeable compaction and integrity were produced by deposition of two separate layers under identical coating conditions.
基金financially supported by the National Basic Research Program of China (973) (No. 2012CB619600)
文摘We report a correlative study of strain distribution and grain structure in the Al matrix of a hot-extruded SiC particulate-reinforced Al composite(SiC_p/2014 Al). Finite element method(FEM) simulation and microstructure characterization indicate that the grain structure of the Al matrix is affected by the interparticulate strain distribution in the matrix during the process. Both electron-backscattered diffraction(EBSD) and selected-area electron diffraction(SAED) indicated localized misorientation in the Al matrix after hot extrusion. Scanning transmission electron microscopy(STEM) revealed fine and recrystallized grains adjacent to the Si C particulate and elongated grains between the particulates. This result is explained in terms of recrystallization under an interparticulate strain distribution during the hot extrusion process.
基金supported by the National Natural Science Foundation of China(22078215)Research Project by Shanxi Scholarship Council of China(2021-055)。
文摘In this work,a new ZnO/CoNiO_(2)/CoO/C metal oxides composite is prepared by cost-effective hydrothermal method coupled with annealing process under N_(2) atmosphere.Notably,the oxidation-defect annealing environment is conducive to both morphology and component of the composite,which flower-like ZnO/CoNiO_(2)/CoO/C is obtained.Benefited from good chemical stability of ZnO,high energy capacity of CoNiO_(2) and CoO and good conductivity of C,the as-prepared sample shows promising electrochemical behavior,including the specific capacity of 1435 C·g^(-1) at 1 A·g^(-1),capacity retention of 87.3%at 20 A·g^(-1),and cycling stability of 90.5%for 3000 cycles at 5 A·g^(-1),respectively.Furthermore,the prepared ZnO/CoNiO_(2)/CoO/C/NF//AC aqueous hybrid supercapacitors device delivers the best specific energy of 55.9 W·h·kg^(-1) at 850 W·kg^(-1).The results reflect that the as-prepared ZnO/CoNiO_(2)/CoO/C microflowers are considered as high performance electrode materials for supercapacitor,and the strategy mentioned in this paper is benefit to prepare mixed metal oxides composite for energy conversion and storage.
基金the National Natural Science Foundation of China
文摘α-Fe_2O_3 nanocrystal was encapsulated by a block-copolymer, hydroxylated poly (styrene-b- butadiene-styrene) (HO-SBS) to fabricate composite microspheres with α-Fe_2O_3 cores and HOSBS shell. Its film fabricated on n-Si wafer acts as the insulator layer in the metal-insulator- semiconductor(MIS) structure. The capacitance-voltage (C-V) properties were measured to characterize the composite particulate films.
文摘The article considers one of the possible approaches to the solution of an urgent issue of metal consumption reduction, increase of operating life and maximum operating temperature as well as reduction of irrecoverable losses of platinum products and alloys when operating under high temperature conditions, particularly for glassblowing and single crystal growing crucibles. A two-layered composite material based on platinum-group metals and corundum plasma ceramics is thoroughly investigated. A successful experience of crucibles exploitation, designed for production of high temperature optical glasses from the composite and results of the research on composite material specimens are described.
基金This work was supported by the China Postdoctoral Science Foundation(No.2003033133)the Basic Science Research Foundation of Tsinghua University(Grant No.091201107)the National Center for Nanoscience and Technology of China.
文摘A bulk metal/ceramic composite material with a honeycomb-like micro-cell structure has been prepared by sintering the spherical Al90Mn9Ce1 alloy powders clad by Al2O3 nano-powder with the spark plasma sintering (SPS) technique. The as-prepared material consists of Al90Mn9Ce1 alloy cell and closed Al2O3 ceramic cell wall. The diameter of the cells is about 20―40 μm, while a thickness of the cell wall is about 1―2 μm. The ultimate compressive strength of the as-sintered materials is about 514 MPa, while its fracture strain is up to about 0.65 %. This composite material might possess good anti-corrosion, thermal endurance and other potential properties due to its unique microstructure. The result shows that the Al90Mn9Ce1/Al2O3 composite powders can be sintered by spark plasma sintering technique despite the large difference in their sintering temperature. This work offers a way of designing and preparing metal/ceramic composite material with functional property.
基金financially supported by the Russian Science Foundation(No.17-72-10042)
文摘A three-dimensional plasticity model was developed and applied to metal-intermetallic laminate composites containingphases of the L12 structure. A multi-scale approach that combined the methods of continuum mechanics and dislocationkinetics was used. This model takes account of the different mechanisms of self-locking superdislocations, the dislocationsand the dislocation walls' density storage for each type of layer at the micro-scale. At the meso-scale, the solutions to thedislocation kinetics equations, in the form of stress-strain curves, were used to create the properties of a three-dimensionalrepresentative element. The numerical simulation study of the macroscopic deformation was carried out with the finiteelement method using the dynamic model of continuum mechanics, which included the classical conservation laws,constitutive equations and the equation of state. It was shown that the simulation results generated using this model were ingood agreement with the mechanical tests conducted on the single crystals of the L12 structure. The model provides anexcellent description of the high-temperature plastic strain superlocalization effect of single crystal intermetallics of theLI2 structure. This paper describes the numerical results of the study of the tension and compression tests of metal-intermetallic laminate composites containing phases of the L12 structure. The model allows the description of the dis-tribution of the accumulated plastic strain inhomogeneities and is capable of predicting the strengthening properties andplastic behaviour of the metal-intermetallic laminate composites containing phases of the L12 structure.