Supported catalysts that are important in technology prominently include atomically dispersed metals and metal clusters.When the metals are noble,they are typically unstablesusceptible to sinteringespecially under red...Supported catalysts that are important in technology prominently include atomically dispersed metals and metal clusters.When the metals are noble,they are typically unstablesusceptible to sinteringespecially under reducing conditions.Embedding the metals in supports such as organic polymers,metal oxides,and zeolites confers stability on the metals but at the cost of catalytic activity associated with the lack of accessibility of metal bonding sites to reactants.An approach to stabilizing noble metal catalysts while maintaining their accessibility involves anchoring them in molecular-scale nests that are in or on supports.The nests include zeolite pore mouths,zeolite surface cups(half-cages),raft-like islands of oxophilic metals bonded to metal oxide supports,clusters of non-noble metals(e.g.,hosting noble metals as single-atom alloys),and nanoscale metal oxide islands that selectively bond to the catalytic metals,isolating them from the support.These examples illustrate a trend toward precision in the synthesis of solid catalysts,and the latter two classes of nested catalysts offer realistic prospects for economical large-scale application.展开更多
Epidemics are threatening public health and social development.Emerging as a green disinfectant,H_(2)O_(2)can prevent the breakout of epidemics in migration.Electrochemical H_(2)O_(2)production powered by renewable el...Epidemics are threatening public health and social development.Emerging as a green disinfectant,H_(2)O_(2)can prevent the breakout of epidemics in migration.Electrochemical H_(2)O_(2)production powered by renewable electricity provides a clean and decentralized solution for on-site disinfection.This review firstly discussed the efficacy of H_(2)O_(2)in disinfection.Then necessary fundamental principles are summarized to gain insight into electrochemical H_(2)O_(2)production.The focus is on exploring pathways to realize a highly efficient H_(2)O_(2)production.Progress in advanced electrocatalysts,typically single-atom catalysts for the two-electron oxygen reduction reaction(2e−ORR),are highlighted to provide high H_(2)O_(2)selectivity design strategies.Finally,a rational design of electrode and electrolytic cells is outlined to realize the on-site disinfection.Overall,this critical review contributes to exploiting the potentials and constraints of electrochemical H_(2)O_(2)generation in disinfection and pinpoints future research directions required for implementation.展开更多
Development of high-performance and cost-effective catalysts for electrocatalytic hydrogen evolution reaction(HER)play crucial role in the growing hydrogen economy.Recently,the atomically dispersed metal catalysts hav...Development of high-performance and cost-effective catalysts for electrocatalytic hydrogen evolution reaction(HER)play crucial role in the growing hydrogen economy.Recently,the atomically dispersed metal catalysts have attracted increasing attention due to their ultimate atom utilization and great potential for highly cost-effective and high-efficiency HER electrocatalyst.Herein,we propose a hightemperature treatment strategy to furtherly improve the HER performance of atomically dispersed Ptbased catalyst.Interestingly,after appropriate high-temperature treatment on the atomically dispersed Pt0.8@CN,the Pt species on the designed N-doped porous carbon substrate with rich defect sites can be re-dispersed to single atom state with new coordination environment.The obtained Pt0.8@CN-1000 shows superior HER performance with overpotential of 13 m V at 10 m A cm^(-2)and mass activity of 11,284 m A/mgPtat-0.1 V,much higher than that of the pristine Pt0.8@CN and commercial Pt/C catalyst.The experimental and theoretical investigations indicate that the high-temperature treatment induces the restructuring of coordination environment and then the optimized Pt electronic state leads to the enhanced HER performances.This work affords new strategy and insights to develop the atomically dispersed high-efficiency catalysts.展开更多
Nitrogen reduction reaction (NRR) is a clean mode of energy conversion and the development of highly efficient NRR electrocatalysts under ambient conditions for industrial application is still a big challenge. Metal-n...Nitrogen reduction reaction (NRR) is a clean mode of energy conversion and the development of highly efficient NRR electrocatalysts under ambient conditions for industrial application is still a big challenge. Metal-nitrogen-carbon (M-N-C) has emerged as a class of single atom catalyst due to the unique geometric structure, high catalytic activity, and clear selectivity. Herein, we designed a series of dual metal single atom catalysts containing adjacent M-N-C dual active centers (MN_(4)/M'N_(4)-C) as NRR electrocatalysts to uncover the structure-activity relationship. By evaluating structural stability, catalytic activity, and selectivity using density functional theory (DFT) calculations, 5 catalysts, such as CrN_(4)/M'N_(4)-C (M’ = Cr, Mn, Fe, Cu and Zn), were determined to exhibit the best NRR catalytic performance with the limiting potential ranging from -0.64 V to -0.62 V. The CrN_(4) center acted as the main catalytic site and the adjacent M'N_(4) center could enhance the NRR catalytic activity by modulation effect based on the analysis of the electronic properties including the charge density difference, partial density of states (PDOS), and Bader charge variation. This study offers useful insights on understanding the structure-activity relationship of dual metal single atom catalysts for electrochemical NRR.展开更多
The pyrolysis of zeolitic imidazolate frameworks(ZIFs) is becoming a popular approach for the synthesis of catalysts comprising porphyrin-like metal single atom catalysts(SACs) on N-doped carbons(M-N-C).Understanding ...The pyrolysis of zeolitic imidazolate frameworks(ZIFs) is becoming a popular approach for the synthesis of catalysts comprising porphyrin-like metal single atom catalysts(SACs) on N-doped carbons(M-N-C).Understanding the structural evolution of M-N-C as a function of ZIF pyrolysis temperature is important for realizing high performance catalysts.Herein,we report a detailed investigation of the evolution of Zn single atom catalyst sites during the pyrolysis of ZIF-8 at temperatures ranging from 500 to 900℃.Results from Zn L-edge and Zn K-edge X-ray absorption spectroscopy studies reveal that tetrahedral ZnN4 centers in ZIF-8 transform to porphyrin-like ZnN4 centers supported on N-doped carbon at temperatures as low as 600℃.As the pyrolysis temperature increased in the range 600-900℃,the Zn atoms moved closer to the N4 coordination plane.This subtle geometry change in the ZnN4 sites alters the electron density on the Zn atoms(formally Zn2+),strongly impacting the catalytic performance for the peroxidase-like decomposition of H2 O2.The catalyst obtained at 800℃(Zn-N-C-800) offered the best performance for H2 O2 decomposition.This work provides valuable new insights about the evolution of porphyrin-like single metal sites on N-doped carbons from ZIF precursors and the factors influencing SAC activity.展开更多
基金B.C.G.acknowledges support from the U.S.Department of Energy(DOE),Office of Science,Basic Energy Sciences(BES)(DE-FG02-04ER15513)A.K.acknowledges support from DOE BES(DE-FG02-05ER15696)J.L.acknowledges support from the National Science Foundation,Grant No.1955474(CHE-1955474).
文摘Supported catalysts that are important in technology prominently include atomically dispersed metals and metal clusters.When the metals are noble,they are typically unstablesusceptible to sinteringespecially under reducing conditions.Embedding the metals in supports such as organic polymers,metal oxides,and zeolites confers stability on the metals but at the cost of catalytic activity associated with the lack of accessibility of metal bonding sites to reactants.An approach to stabilizing noble metal catalysts while maintaining their accessibility involves anchoring them in molecular-scale nests that are in or on supports.The nests include zeolite pore mouths,zeolite surface cups(half-cages),raft-like islands of oxophilic metals bonded to metal oxide supports,clusters of non-noble metals(e.g.,hosting noble metals as single-atom alloys),and nanoscale metal oxide islands that selectively bond to the catalytic metals,isolating them from the support.These examples illustrate a trend toward precision in the synthesis of solid catalysts,and the latter two classes of nested catalysts offer realistic prospects for economical large-scale application.
文摘Epidemics are threatening public health and social development.Emerging as a green disinfectant,H_(2)O_(2)can prevent the breakout of epidemics in migration.Electrochemical H_(2)O_(2)production powered by renewable electricity provides a clean and decentralized solution for on-site disinfection.This review firstly discussed the efficacy of H_(2)O_(2)in disinfection.Then necessary fundamental principles are summarized to gain insight into electrochemical H_(2)O_(2)production.The focus is on exploring pathways to realize a highly efficient H_(2)O_(2)production.Progress in advanced electrocatalysts,typically single-atom catalysts for the two-electron oxygen reduction reaction(2e−ORR),are highlighted to provide high H_(2)O_(2)selectivity design strategies.Finally,a rational design of electrode and electrolytic cells is outlined to realize the on-site disinfection.Overall,this critical review contributes to exploiting the potentials and constraints of electrochemical H_(2)O_(2)generation in disinfection and pinpoints future research directions required for implementation.
基金financially supported by the National Science Foundation of China(21773112,21173119,and 21273109)the National Key Technology R&D Program of China(2017YFB0310704)the Fundamental Research Funds for the Central Universities and the Hubei Key Laboratory for Processing and Application of Catalytic Materials(CH201401)。
文摘Development of high-performance and cost-effective catalysts for electrocatalytic hydrogen evolution reaction(HER)play crucial role in the growing hydrogen economy.Recently,the atomically dispersed metal catalysts have attracted increasing attention due to their ultimate atom utilization and great potential for highly cost-effective and high-efficiency HER electrocatalyst.Herein,we propose a hightemperature treatment strategy to furtherly improve the HER performance of atomically dispersed Ptbased catalyst.Interestingly,after appropriate high-temperature treatment on the atomically dispersed Pt0.8@CN,the Pt species on the designed N-doped porous carbon substrate with rich defect sites can be re-dispersed to single atom state with new coordination environment.The obtained Pt0.8@CN-1000 shows superior HER performance with overpotential of 13 m V at 10 m A cm^(-2)and mass activity of 11,284 m A/mgPtat-0.1 V,much higher than that of the pristine Pt0.8@CN and commercial Pt/C catalyst.The experimental and theoretical investigations indicate that the high-temperature treatment induces the restructuring of coordination environment and then the optimized Pt electronic state leads to the enhanced HER performances.This work affords new strategy and insights to develop the atomically dispersed high-efficiency catalysts.
基金supported by the open project of State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology (No. AWJ-19M07)the National Natural Science Foundation of China (No. U2067216)。
文摘Nitrogen reduction reaction (NRR) is a clean mode of energy conversion and the development of highly efficient NRR electrocatalysts under ambient conditions for industrial application is still a big challenge. Metal-nitrogen-carbon (M-N-C) has emerged as a class of single atom catalyst due to the unique geometric structure, high catalytic activity, and clear selectivity. Herein, we designed a series of dual metal single atom catalysts containing adjacent M-N-C dual active centers (MN_(4)/M'N_(4)-C) as NRR electrocatalysts to uncover the structure-activity relationship. By evaluating structural stability, catalytic activity, and selectivity using density functional theory (DFT) calculations, 5 catalysts, such as CrN_(4)/M'N_(4)-C (M’ = Cr, Mn, Fe, Cu and Zn), were determined to exhibit the best NRR catalytic performance with the limiting potential ranging from -0.64 V to -0.62 V. The CrN_(4) center acted as the main catalytic site and the adjacent M'N_(4) center could enhance the NRR catalytic activity by modulation effect based on the analysis of the electronic properties including the charge density difference, partial density of states (PDOS), and Bader charge variation. This study offers useful insights on understanding the structure-activity relationship of dual metal single atom catalysts for electrochemical NRR.
基金supported by the Ministry of Business, Innovation and Employment Catalyst Fund (MAUX 1609)the University of Auckland Faculty Research Development Fund+1 种基金the MacDiarmid Institute for Advanced Materials and Nanotechnologya generous philanthropic donation from Greg and Kathryn Trounson。
文摘The pyrolysis of zeolitic imidazolate frameworks(ZIFs) is becoming a popular approach for the synthesis of catalysts comprising porphyrin-like metal single atom catalysts(SACs) on N-doped carbons(M-N-C).Understanding the structural evolution of M-N-C as a function of ZIF pyrolysis temperature is important for realizing high performance catalysts.Herein,we report a detailed investigation of the evolution of Zn single atom catalyst sites during the pyrolysis of ZIF-8 at temperatures ranging from 500 to 900℃.Results from Zn L-edge and Zn K-edge X-ray absorption spectroscopy studies reveal that tetrahedral ZnN4 centers in ZIF-8 transform to porphyrin-like ZnN4 centers supported on N-doped carbon at temperatures as low as 600℃.As the pyrolysis temperature increased in the range 600-900℃,the Zn atoms moved closer to the N4 coordination plane.This subtle geometry change in the ZnN4 sites alters the electron density on the Zn atoms(formally Zn2+),strongly impacting the catalytic performance for the peroxidase-like decomposition of H2 O2.The catalyst obtained at 800℃(Zn-N-C-800) offered the best performance for H2 O2 decomposition.This work provides valuable new insights about the evolution of porphyrin-like single metal sites on N-doped carbons from ZIF precursors and the factors influencing SAC activity.