The temperature drop of molten metal flowing in open channels is numerically determined. Rectangular, trapezoidal and triangular geometries are considered. The overall heat transfer coefficients for the bottom, side w...The temperature drop of molten metal flowing in open channels is numerically determined. Rectangular, trapezoidal and triangular geometries are considered. The overall heat transfer coefficients for the bottom, side walls and free surface of the channel have been taken from the literature. For each geometry, the volumetric flow rate, mean residence time and temperature drop as a function of the channel inclination angle were determined. The rectangular and trapezoidal geometries present the smallest temperature drops, while the triangular geometry presents the greatest temperature drop. The factors that most affect this drop are the value of the free surface area of the channel, and the average residence time of the molten metal in the channel.展开更多
Using the sediment monitoring data of five sections of the Xiling Channel inland waterway of the Pearl River Delta,and using Nemerow composite index,the coefficient of variation,and the index of geoaccumulation( Igeo)...Using the sediment monitoring data of five sections of the Xiling Channel inland waterway of the Pearl River Delta,and using Nemerow composite index,the coefficient of variation,and the index of geoaccumulation( Igeo) and the potential ecological risk index,this paper analyzed and assessed the heavy metal pollution of sediments. The results indicate that Cr reached mild pollution;Cu had a large degree of variation,and the changes of Cr and Zn were significant with fluctuation;the enrichment of heavy metals decreased as follows: Cd > Cu > Cr > Zn> Pb > Ni > Hg > As;Cd had the highest degree of enrichment and belonged to moderate pollution;the ecological hazard of heavy metals was Cd > Hg > Cu > Pb > As > Cr > Ni > Zn,and Cd had the highest ecological hazard and was the main controlling factor of potential ecological risk. In conclusion,the sediments in Xiling Channel inland waterway were polluted by heavy metals to some extent,and cadmium was the main pollutant and had the largest potential ecological risk.展开更多
The flow of liquids in open channels has been studied since ancient Rome. However, the vast majority of published reports on flow in open channels are focused on the transport of drinking water and sewage disposal. Th...The flow of liquids in open channels has been studied since ancient Rome. However, the vast majority of published reports on flow in open channels are focused on the transport of drinking water and sewage disposal. The literature on the transport of molten metals in open channels is quite scarce. In this work, the uniform flow of pig iron and molten aluminum in rectangular open channels is studied. Specific energy curves are constructed and critical heights are analytically determined. The transition from subcritical to supercritical flow is analyzed as a function of the angle of inclination of the channel and the roughness of its walls. Manning’s equation is applied to the pig iron flow using data reported in the literature for molten aluminum. The need to correct the roughness coefficient for pig iron is observed in order to obtain results consistent with those previously reported.展开更多
Negative Bias Temperature Instability (NBTI) has become one of the most serious reliability problems of metaloxide-semiconductor field-effect transistors (MOSFETs). The degradation mechanism and model of NBTI are ...Negative Bias Temperature Instability (NBTI) has become one of the most serious reliability problems of metaloxide-semiconductor field-effect transistors (MOSFETs). The degradation mechanism and model of NBTI are studied in this paper. From the experimental results, the exponential value 0.25-0.5 which represents the relation of NBTI degradation and stress time is obtained. Based on the experimental results and existing model, the reaction-diffusion model with H^+ related species generated is deduced, and the exponent 0.5 is obtained. The results suggest that there should be H^+ generated in the NBTI degradation. With the real time method, the degradation with an exponent 0.5 appears clearly in drain current shift during the first seconds of stress and then verifies that H^+ generated during NBTI stress.展开更多
Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy...Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free InGaN channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 x 10^13 cm-2 is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cruZ/V-s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that InGaN channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional GaN channel heterostructure. The gratifying results imply that InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices.展开更多
A large gate metal height technique is proposed to enhance breakdown voltage in GaN channel and AlGaN channel high-electron-mobility-transistors(HEMTs).For GaN channel HEMTs with gate-drain spacing LGD=2.5μm,the brea...A large gate metal height technique is proposed to enhance breakdown voltage in GaN channel and AlGaN channel high-electron-mobility-transistors(HEMTs).For GaN channel HEMTs with gate-drain spacing LGD=2.5μm,the breakdown voltage VBR increases from 518 V to 582 V by increasing gate metal height h from 0.2μm to 0.4μm.For GaN channel HEMTs with LGD=7μm,VBR increases from 953 V to 1310 V by increasing h from 0.8μm to 1.6μm.The breakdown voltage enhancement results from the increase of the gate sidewall capacitance and depletion region extension.For Al0.4Ga0.6N channel HEMT with LGD=7μm,VBR increases from 1535 V to 1763 V by increasing h from 0.8μm to 1.6μm,resulting in a high average breakdown electric field of 2.51 MV/cm.Simulation and analysis indicate that the high gate metal height is an effective method to enhance breakdown voltage in GaN-based HEMTs,and this method can be utilized in all the lateral semiconductor devices.展开更多
Metallic elements have various origins: natural and anthropogenic sources as geochemical, marine and atmospheric sources resulting from the fallout of pollutants emitted or dust raised and which are transported by wat...Metallic elements have various origins: natural and anthropogenic sources as geochemical, marine and atmospheric sources resulting from the fallout of pollutants emitted or dust raised and which are transported by water and air currents. Thus marine, brackish and fresh continental waters may have high metal concentrations. In addition, some essential metals can become toxic above certain concentration values in aquatic environments. The aquatic ecosystems of Cotonou channel and lake Nokoué receive the pollutants charges from the town cities of Cotonou, Abomey-Calavi and town hall of So Ava. The aim of this study is to analyze waters from Eighteen (18) stations identified in the two ecosystems (nine by ecosystem). The concentrations of magnesium (Mg), calcium (Ca), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), beryllium (Be), aluminum (Al), strontium (Sr), molybdenum (Mo), silver (Ag), tin (Sn), barium (Ba), platinum (Pt), mercury (Hg), thallium (Tl), lead (Pb), thorium (Th) and uranium (U) were measured after acid digestion of the water samples using the inductively coupled plasma source mass spectrometer (ICP-MS). The results of the analyses indicate an unequal distribution of metals in the different ecosystems. However, atypical concentrations were observed at some stations of the lake and the channel. Magnesium, calcium and manganese have very high values in Lake Nokoué respectively at Ganvié market station GAN_M (2990 ± 105 mg/L), Ganvié center, station GAN_C (4991 ± 177 mg/L) and Lake middle station MLak4 (10662 ± 17.03 μg/L). On the other hand, iron, aluminum and strontium have very high concentrations in the Cotonou Channel respectively at Agbato station AGB (5236 ± 103 and 8289 ± 519 μg/L) and at the estuary station EST (6118 ± 68 μg/L). The concentrations were compared to wells and cborehole waters in sixth neighborhood of Cotonou. We have used statistical analyzers such as MANOVA which have made it possible to classify the waters and metals in the ecosystems studied compared to groundwater and Well water waters. We use hierarchical clustering on principal components to identify similarities between stations based on metal concentration with R software packages “FactoMineR” and “factoextra”. In general, we can conclude that most of the metals have an anthropogenic source except strontium and major elements (Ca and Mg) which could respectively provide from marine waters and geochemical sources.展开更多
In the metallurgical industries, it is very important to characterize the flow of molten metals in open channels given that they are transported through these devices to different plant sections. Howeve...In the metallurgical industries, it is very important to characterize the flow of molten metals in open channels given that they are transported through these devices to different plant sections. However, unlike the flow of water which has been studied since ancient times, the flow of molten metals in open channels has received little attention. The unsteady non-uniform flow of blast furnace molten pig iron in a rectangular open channel is analyzed in this work by numerical solution of the Saint-Venant equations. The influence of mesh size on the convergence of molten metal height is studied to determine the proper mesh and time step sizes. A sinusoidal inflow pulse is imposed at the entrance of the channel in order to analyze the propagation of the resulting wave. The influence of the angle of inclination of the channel and the roughness coefficient of the walls on the amplitude and the dynamic behavior of the height of the molten metal are analyzed. Phase portraits of the channel state variables are constructed and interpreted. Numerical simulations show that as the angle of inclination of the channel increases, the amplitude of the formed wave decreases. From 10 degrees onwards, the peak of the wave descends even below the initial height. On the other hand, the roughness coefficient affects the molten pig iron height profiles in an inverse way than the angle of inclination. The amplitude of the formed wave increases as the roughness coefficient increases.展开更多
U-channel forming tests were performed to investigate the surface topography evolvement of hot-dip galvanized(GI) and galvannealed(GA) steels and the effects of die hardness on sheet metal forming(SMF). Experimental r...U-channel forming tests were performed to investigate the surface topography evolvement of hot-dip galvanized(GI) and galvannealed(GA) steels and the effects of die hardness on sheet metal forming(SMF). Experimental results indicate that the surface roughness values of the two galvanized steels increase with the number of forming,i.e.,the surface topographies of galvanized steels are roughened in SMF. Moreover,GI steel has a better ability of damage-resistance than GA steel. The mechanisms of topography evolvement are different in the forming of GI and GA steels. Scratch is the main form of surface damage in the forming of GI steels. The severity of scratch can be decreased by increasing die hardness. GA steel results in exfoliating of the coating firstly and then severe scratching. The surface topography of galvannealed steels can be improved by increasing die hardness. However,the hardness should not be too high.展开更多
Based on the analysis of vertical electric potential distribution across the dual-channel strained p-type Si/strained Si1-xGex/relaxd Si1-yGey(s-Si/s-SiGe/Si1-yGey) metal-oxide-semiconductor field-effect transistor ...Based on the analysis of vertical electric potential distribution across the dual-channel strained p-type Si/strained Si1-xGex/relaxd Si1-yGey(s-Si/s-SiGe/Si1-yGey) metal-oxide-semiconductor field-effect transistor (PMOSFET), analytical expressions of the threshold voltages for buried channel and surface channel are presented. And the maximum allowed thickness of s-Si is given, which can ensure that the strong inversion appears earlier in the buried channel (compressive strained SiGe) than in the surface channel (tensile strained Si), because the hole mobility in the buried channel is higher than that in the surface channel. Thus they offer a good accuracy as compared with the results of device simulator ISE. With this model, the variations of threshold voltage and maximum allowed thickness of s-Si with design parameters can be predicted, such as Ge fraction, layer thickness, and doping concentration. This model can serve as a useful tool for p-channel s-Si/s-SiGe/Si1-yGey metal-oxide-semiconductor field-effect transistor (MOSFET) designs.展开更多
A novel idea of transport of yttrium(Ⅲ) metal ions through fibers supported liquid membrane in two stage processes namely source to membrane and membrane to receiving phase has been proposed.The fibers supported liqu...A novel idea of transport of yttrium(Ⅲ) metal ions through fibers supported liquid membrane in two stage processes namely source to membrane and membrane to receiving phase has been proposed.The fibers supported liquid membrane was impregnated with different concentrations carrier.The experimental variables explored were concentration of yttrium(Ⅲ) ions,pH of source phase,PC-88A concentration in membrane phase,acid concentration in receiving phase and stirring speed.The pre-concentration of yttrium(Ⅲ) ions ...展开更多
Direct simulation of 3-D MHD(magnetohydrodynamics) flows in liquid metal fusion blanket with flow channel insert(FCI) has been conducted.Two kinds of pressure equilibrium slot (PES) in FCI,which are used to balance th...Direct simulation of 3-D MHD(magnetohydrodynamics) flows in liquid metal fusion blanket with flow channel insert(FCI) has been conducted.Two kinds of pressure equilibrium slot (PES) in FCI,which are used to balance the pressure difference between the inside and outside of FCI,are considered with a slot in Hartmann wall or a slot in side wall,respectively.The velocity and pressure distribution of FCI made of SiC/SiC_f are numerically studied to illustrate the 3-D MHD flow effects,which clearly show that the flows in fusion blanket with FCI are typical three-dimensional issues and the assumption of 2-D fully developed flows is not the real physical problem of the MHD flows in dual-coolant liquid metal fusion blanket.The optimum opening location of PES has been analyzed based on the 3-D pressure and velocity distributions.展开更多
Consequent on MHD geometry sensibility phenomena was measured in an accident case;the more detail experiments have been conducted at the liquid metal experimental loop upgrade facility (LMEL-U). The experimental resul...Consequent on MHD geometry sensibility phenomena was measured in an accident case;the more detail experiments have been conducted at the liquid metal experimental loop upgrade facility (LMEL-U). The experimental results indicate that MHD pressure drop can be greatly reduced in the special designed ducts. Base on the experimental data, an innovation channel concept (tentatively called as the secondary flow channel, short in “S-channel”) is addressed as a reducing MHD pressure drop channel for the application of a liquid metal blanket system in fusion reactor. It may be a dawn for solving MHD pressure drop key issue of liquid metal blanket system.展开更多
Based on an analytical solution of the two-dimensional Poisson equation in the subthreshold region, this paper investigates the behavior of DIBL (drain induced barrier lowering) effect for short channel 4H-SiC metal...Based on an analytical solution of the two-dimensional Poisson equation in the subthreshold region, this paper investigates the behavior of DIBL (drain induced barrier lowering) effect for short channel 4H-SiC metal semiconductor field effect transistors (MESFETs). An accurate analytical model of threshold voltage shift for the asymmetric short channel 4H-SiC MESFET is presented and thus verified. According to the presented model, it analyses the threshold voltage for short channel device on the L/a (channel length/channel depth) ratio, drain applied voltage VDS and channel doping concentration ND, thus providing a good basis for the design and modelling of short channel 4H-SiC MESFETs device.展开更多
文摘The temperature drop of molten metal flowing in open channels is numerically determined. Rectangular, trapezoidal and triangular geometries are considered. The overall heat transfer coefficients for the bottom, side walls and free surface of the channel have been taken from the literature. For each geometry, the volumetric flow rate, mean residence time and temperature drop as a function of the channel inclination angle were determined. The rectangular and trapezoidal geometries present the smallest temperature drops, while the triangular geometry presents the greatest temperature drop. The factors that most affect this drop are the value of the free surface area of the channel, and the average residence time of the molten metal in the channel.
基金Supported by Science and Technology Planning Project of Zhaoqing City "Research and Development of Key Technologies for Efficient Deep Treatment and Reuse of Decentralized Wastewater in Zhaoqing City"(2018N001)Characteristic Innovation Project of Guangdong Provincial Department of Education(Natural Science)"Research and Development of Key Technologies for Efficient Wastewater Treatment and In-situ Sludge Reduction Based on Bioenhancement and Process Control"(2018KTSCX251)
文摘Using the sediment monitoring data of five sections of the Xiling Channel inland waterway of the Pearl River Delta,and using Nemerow composite index,the coefficient of variation,and the index of geoaccumulation( Igeo) and the potential ecological risk index,this paper analyzed and assessed the heavy metal pollution of sediments. The results indicate that Cr reached mild pollution;Cu had a large degree of variation,and the changes of Cr and Zn were significant with fluctuation;the enrichment of heavy metals decreased as follows: Cd > Cu > Cr > Zn> Pb > Ni > Hg > As;Cd had the highest degree of enrichment and belonged to moderate pollution;the ecological hazard of heavy metals was Cd > Hg > Cu > Pb > As > Cr > Ni > Zn,and Cd had the highest ecological hazard and was the main controlling factor of potential ecological risk. In conclusion,the sediments in Xiling Channel inland waterway were polluted by heavy metals to some extent,and cadmium was the main pollutant and had the largest potential ecological risk.
文摘The flow of liquids in open channels has been studied since ancient Rome. However, the vast majority of published reports on flow in open channels are focused on the transport of drinking water and sewage disposal. The literature on the transport of molten metals in open channels is quite scarce. In this work, the uniform flow of pig iron and molten aluminum in rectangular open channels is studied. Specific energy curves are constructed and critical heights are analytically determined. The transition from subcritical to supercritical flow is analyzed as a function of the angle of inclination of the channel and the roughness of its walls. Manning’s equation is applied to the pig iron flow using data reported in the literature for molten aluminum. The need to correct the roughness coefficient for pig iron is observed in order to obtain results consistent with those previously reported.
基金supported by the Fundamental Research Funds in Xidian Universities (Grant No.JY10000904009)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No.2007BAK25B03)
文摘Negative Bias Temperature Instability (NBTI) has become one of the most serious reliability problems of metaloxide-semiconductor field-effect transistors (MOSFETs). The degradation mechanism and model of NBTI are studied in this paper. From the experimental results, the exponential value 0.25-0.5 which represents the relation of NBTI degradation and stress time is obtained. Based on the experimental results and existing model, the reaction-diffusion model with H^+ related species generated is deduced, and the exponent 0.5 is obtained. The results suggest that there should be H^+ generated in the NBTI degradation. With the real time method, the degradation with an exponent 0.5 appears clearly in drain current shift during the first seconds of stress and then verifies that H^+ generated during NBTI stress.
基金supported by the National Natural Science Foundation of China(Grant Nos.61306017,61334002,61474086,and 11435010)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61306017)
文摘Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free InGaN channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 x 10^13 cm-2 is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cruZ/V-s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that InGaN channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional GaN channel heterostructure. The gratifying results imply that InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices.
基金Project supported by the National Key Science&Technology Special Project of China(Grant No.2017ZX01001301)the National Key Research and Development Program of China(Grant No.2016YFB0400100)the National Natural Science Foundation of China(Grant Nos.51777168 and 61801374).
文摘A large gate metal height technique is proposed to enhance breakdown voltage in GaN channel and AlGaN channel high-electron-mobility-transistors(HEMTs).For GaN channel HEMTs with gate-drain spacing LGD=2.5μm,the breakdown voltage VBR increases from 518 V to 582 V by increasing gate metal height h from 0.2μm to 0.4μm.For GaN channel HEMTs with LGD=7μm,VBR increases from 953 V to 1310 V by increasing h from 0.8μm to 1.6μm.The breakdown voltage enhancement results from the increase of the gate sidewall capacitance and depletion region extension.For Al0.4Ga0.6N channel HEMT with LGD=7μm,VBR increases from 1535 V to 1763 V by increasing h from 0.8μm to 1.6μm,resulting in a high average breakdown electric field of 2.51 MV/cm.Simulation and analysis indicate that the high gate metal height is an effective method to enhance breakdown voltage in GaN-based HEMTs,and this method can be utilized in all the lateral semiconductor devices.
文摘Metallic elements have various origins: natural and anthropogenic sources as geochemical, marine and atmospheric sources resulting from the fallout of pollutants emitted or dust raised and which are transported by water and air currents. Thus marine, brackish and fresh continental waters may have high metal concentrations. In addition, some essential metals can become toxic above certain concentration values in aquatic environments. The aquatic ecosystems of Cotonou channel and lake Nokoué receive the pollutants charges from the town cities of Cotonou, Abomey-Calavi and town hall of So Ava. The aim of this study is to analyze waters from Eighteen (18) stations identified in the two ecosystems (nine by ecosystem). The concentrations of magnesium (Mg), calcium (Ca), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), beryllium (Be), aluminum (Al), strontium (Sr), molybdenum (Mo), silver (Ag), tin (Sn), barium (Ba), platinum (Pt), mercury (Hg), thallium (Tl), lead (Pb), thorium (Th) and uranium (U) were measured after acid digestion of the water samples using the inductively coupled plasma source mass spectrometer (ICP-MS). The results of the analyses indicate an unequal distribution of metals in the different ecosystems. However, atypical concentrations were observed at some stations of the lake and the channel. Magnesium, calcium and manganese have very high values in Lake Nokoué respectively at Ganvié market station GAN_M (2990 ± 105 mg/L), Ganvié center, station GAN_C (4991 ± 177 mg/L) and Lake middle station MLak4 (10662 ± 17.03 μg/L). On the other hand, iron, aluminum and strontium have very high concentrations in the Cotonou Channel respectively at Agbato station AGB (5236 ± 103 and 8289 ± 519 μg/L) and at the estuary station EST (6118 ± 68 μg/L). The concentrations were compared to wells and cborehole waters in sixth neighborhood of Cotonou. We have used statistical analyzers such as MANOVA which have made it possible to classify the waters and metals in the ecosystems studied compared to groundwater and Well water waters. We use hierarchical clustering on principal components to identify similarities between stations based on metal concentration with R software packages “FactoMineR” and “factoextra”. In general, we can conclude that most of the metals have an anthropogenic source except strontium and major elements (Ca and Mg) which could respectively provide from marine waters and geochemical sources.
文摘In the metallurgical industries, it is very important to characterize the flow of molten metals in open channels given that they are transported through these devices to different plant sections. However, unlike the flow of water which has been studied since ancient times, the flow of molten metals in open channels has received little attention. The unsteady non-uniform flow of blast furnace molten pig iron in a rectangular open channel is analyzed in this work by numerical solution of the Saint-Venant equations. The influence of mesh size on the convergence of molten metal height is studied to determine the proper mesh and time step sizes. A sinusoidal inflow pulse is imposed at the entrance of the channel in order to analyze the propagation of the resulting wave. The influence of the angle of inclination of the channel and the roughness coefficient of the walls on the amplitude and the dynamic behavior of the height of the molten metal are analyzed. Phase portraits of the channel state variables are constructed and interpreted. Numerical simulations show that as the angle of inclination of the channel increases, the amplitude of the formed wave decreases. From 10 degrees onwards, the peak of the wave descends even below the initial height. On the other hand, the roughness coefficient affects the molten pig iron height profiles in an inverse way than the angle of inclination. The amplitude of the formed wave increases as the roughness coefficient increases.
基金Project(50605043) supported by the National Natural Science Foundation of China
文摘U-channel forming tests were performed to investigate the surface topography evolvement of hot-dip galvanized(GI) and galvannealed(GA) steels and the effects of die hardness on sheet metal forming(SMF). Experimental results indicate that the surface roughness values of the two galvanized steels increase with the number of forming,i.e.,the surface topographies of galvanized steels are roughened in SMF. Moreover,GI steel has a better ability of damage-resistance than GA steel. The mechanisms of topography evolvement are different in the forming of GI and GA steels. Scratch is the main form of surface damage in the forming of GI steels. The severity of scratch can be decreased by increasing die hardness. GA steel results in exfoliating of the coating firstly and then severe scratching. The surface topography of galvannealed steels can be improved by increasing die hardness. However,the hardness should not be too high.
基金Project supported by the National Defence Pre-research Foundation of China (Grant Nos. 51308040203,9140A08060407DZ0103,and 6139801)
文摘Based on the analysis of vertical electric potential distribution across the dual-channel strained p-type Si/strained Si1-xGex/relaxd Si1-yGey(s-Si/s-SiGe/Si1-yGey) metal-oxide-semiconductor field-effect transistor (PMOSFET), analytical expressions of the threshold voltages for buried channel and surface channel are presented. And the maximum allowed thickness of s-Si is given, which can ensure that the strong inversion appears earlier in the buried channel (compressive strained SiGe) than in the surface channel (tensile strained Si), because the hole mobility in the buried channel is higher than that in the surface channel. Thus they offer a good accuracy as compared with the results of device simulator ISE. With this model, the variations of threshold voltage and maximum allowed thickness of s-Si with design parameters can be predicted, such as Ge fraction, layer thickness, and doping concentration. This model can serve as a useful tool for p-channel s-Si/s-SiGe/Si1-yGey metal-oxide-semiconductor field-effect transistor (MOSFET) designs.
基金supported by Department of Science and Technology,Government of India (GAP 271526)
文摘A novel idea of transport of yttrium(Ⅲ) metal ions through fibers supported liquid membrane in two stage processes namely source to membrane and membrane to receiving phase has been proposed.The fibers supported liquid membrane was impregnated with different concentrations carrier.The experimental variables explored were concentration of yttrium(Ⅲ) ions,pH of source phase,PC-88A concentration in membrane phase,acid concentration in receiving phase and stirring speed.The pre-concentration of yttrium(Ⅲ) ions ...
基金supported by National Natural Science Foundation of China with grant Nos.10872212,50936006National Magnetic Confinement Fusion Science Program in China with grant No.2009GB10401
文摘Direct simulation of 3-D MHD(magnetohydrodynamics) flows in liquid metal fusion blanket with flow channel insert(FCI) has been conducted.Two kinds of pressure equilibrium slot (PES) in FCI,which are used to balance the pressure difference between the inside and outside of FCI,are considered with a slot in Hartmann wall or a slot in side wall,respectively.The velocity and pressure distribution of FCI made of SiC/SiC_f are numerically studied to illustrate the 3-D MHD flow effects,which clearly show that the flows in fusion blanket with FCI are typical three-dimensional issues and the assumption of 2-D fully developed flows is not the real physical problem of the MHD flows in dual-coolant liquid metal fusion blanket.The optimum opening location of PES has been analyzed based on the 3-D pressure and velocity distributions.
文摘Consequent on MHD geometry sensibility phenomena was measured in an accident case;the more detail experiments have been conducted at the liquid metal experimental loop upgrade facility (LMEL-U). The experimental results indicate that MHD pressure drop can be greatly reduced in the special designed ducts. Base on the experimental data, an innovation channel concept (tentatively called as the secondary flow channel, short in “S-channel”) is addressed as a reducing MHD pressure drop channel for the application of a liquid metal blanket system in fusion reactor. It may be a dawn for solving MHD pressure drop key issue of liquid metal blanket system.
基金Project partly supported by National Defense Basic Research Program of China (Grant No 51327010101)
文摘Based on an analytical solution of the two-dimensional Poisson equation in the subthreshold region, this paper investigates the behavior of DIBL (drain induced barrier lowering) effect for short channel 4H-SiC metal semiconductor field effect transistors (MESFETs). An accurate analytical model of threshold voltage shift for the asymmetric short channel 4H-SiC MESFET is presented and thus verified. According to the presented model, it analyses the threshold voltage for short channel device on the L/a (channel length/channel depth) ratio, drain applied voltage VDS and channel doping concentration ND, thus providing a good basis for the design and modelling of short channel 4H-SiC MESFETs device.