期刊文献+
共找到5,353篇文章
< 1 2 250 >
每页显示 20 50 100
Laser‑Induced and MOF‑Derived Metal Oxide/Carbon Composite for Synergistically Improved Ethanol Sensing at Room temperature 被引量:2
1
作者 Hyeongtae Lim Hyeokjin Kwon +2 位作者 Hongki Kang Jae Eun Jang Hyuk‑Jun Kwon 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期210-220,共11页
Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing... Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices. 展开更多
关键词 metal-organic frameworks metal oxide Carbon composite LASER Gas sensor
下载PDF
12.6μm-Thick Asymmetric Composite Electrolyte with Superior Interfacial Stability for Solid-State Lithium-Metal Batteries 被引量:2
2
作者 Zheng Zhang Jingren Gou +4 位作者 Kaixuan Cui Xin Zhang Yujian Yao Suqing Wang Haihui Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期397-409,共13页
Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage ... Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes,and to minimize the electrolyte thickness to achieve highenergy-density of SSLMBs.Herein,we develop an ultrathin(12.6μm)asymmetric composite solid-state electrolyte with ultralight areal density(1.69 mg cm^(−2))for SSLMBs.The electrolyte combining a garnet(LLZO)layer and a metal organic framework(MOF)layer,which are fabricated on both sides of the polyethylene(PE)separator separately by tape casting.The PE separator endows the electrolyte with flexibility and excellent mechanical properties.The LLZO layer on the cathode side ensures high chemical stability at high voltage.The MOF layer on the anode side achieves a stable electric field and uniform Li flux,thus promoting uniform Li^(+)deposition.Thanks to the well-designed structure,the Li symmetric battery exhibits an ultralong cycle life(5000 h),and high-voltage SSLMBs achieve stable cycle performance.The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg^(−1)/773.1 Wh L^(−1).This simple operation allows for large-scale preparation,and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs. 展开更多
关键词 Solid-state lithium metal batteries composite solid-state electrolyte Ultrathin asymmetric structure Pouch cells
下载PDF
An overview of additively manufactured metal matrix composites:preparation,performance,and challenge
3
作者 Liang-Yu Chen Peng Qin +1 位作者 Lina Zhang Lai-Chang Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期118-161,共44页
Metal matrix composites(MMCs)are frequently employed in various advanced industries due to their high modulus and strength,favorable wear and corrosion resistance,and other good properties at elevated temperatures.In ... Metal matrix composites(MMCs)are frequently employed in various advanced industries due to their high modulus and strength,favorable wear and corrosion resistance,and other good properties at elevated temperatures.In recent decades,additive manufacturing(AM)technology has garnered attention as a potential way for fabricating MMCs.This article provides a comprehensive review of recent endeavors and progress in AM of MMCs,encompassing available AM technologies,types of reinforcements,feedstock preparation,synthesis principles during the AM process,typical AM-produced MMCs,strengthening mechanisms,challenges,and future interests.Compared to conventionally manufactured MMCs,AM-produced MMCs exhibit more uniformly distributed reinforcements and refined microstructure,resulting in comparable or even better mechanical properties.In addition,AM technology can produce bulk MMCs with significantly low porosity and fabricate geometrically complex MMC components and MMC lattice structures.As reviewed,many AM-produced MMCs,such as Al matrix composites,Ti matrix composites,nickel matrix composites,Fe matrix composites,etc,have been successfully produced.The types and contents of reinforcements strongly influence the properties of AM-produced MMCs,the choice of AM technology,and the applied processing parameters.In these MMCs,four primary strengthening mechanisms have been identified:Hall–Petch strengthening,dislocation strengthening,load transfer strengthening,and Orowan strengthening.AM technologies offer advantages that enhance the properties of MMCs when compared with traditional fabrication methods.Despite the advantages above,further challenges of AM-produced MMCs are still faced,such as new methods and new technologies for investigating AM-produced MMCs,the intrinsic nature of MMCs coupled with AM technologies,and challenges in the AM processes.Therefore,the article concludes by discussing the challenges and future interests of AM of MMCs. 展开更多
关键词 additive manufacturing FEEDSTOCK metal matrix composites MICROSTRUCTURE PERFORMANCE
下载PDF
Research progress in friction stir processing of magnesium alloys and their metal matrix surface composites: Evolution in the 21^(st )century
4
作者 Roshan Vijay Marode Tamiru Alemu Lemma +3 位作者 Nabihah Sallih Srinivasa Rao Pedapati Mokhtar Awang Adeel Hassan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2091-2146,共56页
Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing... Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field. 展开更多
关键词 Magnesium alloys Friction stir processing metal matrix composites LIGHTWEIGHT Surface modification
下载PDF
A Single-Layer Piezoelectric Composite Separator for Durable Operation of Li Metal Anode at High Rates
5
作者 Yuanpeng Ji Botao Yuan +9 位作者 Jiawei Zhang Zhezhi Liu Shijie Zhong Jipeng Liu Yuanpeng Liu Mengqiu Yang Changguo Wang Chunhui Yang Jiecai Han Weidong He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期265-274,共10页
Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithiu... Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithium metal batteries owing to the fragile ceramic layer or low-piezoelectricity polymer as employed.Herein,by combining PVDF-HFP and ferroelectric BaTiO_(3),we develop a homogeneous,single-layer composite separator with strong piezoelectric effects to inhibit dendrite growth while maintaining high mechanical strength.As squeezed by local protrusion,the polarized PVDF-HFP/BaTiO_(3)composite separator generates a local voltage to suppress the local-intensified electric field and further deconcentrate regional lithium-ion flux to retard lithium deposition on the protrusion,hence enabling a smoother and more compact lithium deposition morphology than the unpoled composite separator and the pure PVDF-HFP separator,especially at high rates.Remarkably,the homogeneous incorporation of BaTiO_(3)highly improves the piezoelectric performances of the separator with residual polarization of 0.086 pC cm^(-2)after polarization treatment,four times that of the pure PVDF-HFP separator,and simultaneously increases the transference number of lithium-ion from 0.45 to 0.57.Beneficial from the prominent piezoelectric mechanism,the polarized PVDF-HFP/BaTiO_(3)composite separator enables stable cyclic performances of Li||LiFePO_(4)cells for 400 cycles at 2 C(1 C=170 mA g^(-1))with a capacity retention above 99%,and for 600 cycles at 5 C with a capacity retention over 85%. 展开更多
关键词 composite separator Li metal anodes piezoelectric materials PVDF-HFP uniform Li deposition
下载PDF
Ballistic performance of titanium-based layered composites made using blended elemental powder metallurgy and hot isostatic pressing
6
作者 Pavlo Markovsky Jacek Janiszewski +5 位作者 Dmytro Savvakin Oleksandr Stasyuk Bartosz Fikus Victor Samarov Vianey Ellison Sergey V.Prikhodko 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期1-14,共14页
Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to... Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually. 展开更多
关键词 metal matrix composites Powder metallurgy Titanium hydride powder Master alloy Titanium carbide Titanium boride Hot isostatic pressing Ballistic tests
下载PDF
Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries:A Review 被引量:13
7
作者 Hongmei Liang Li Wang +4 位作者 Aiping Wang Youzhi Song Yanzhou Wu Yang Yang Xiangming He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期266-297,共32页
Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state el... Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state electrolytes(PSEs)are competitive candidates for replacing commercial liquid electrolytes due to their flexibility,shape versatility and easy machinability.Despite the rapid development of PSEs,their practical application still faces obstacles including poor ionic conductivity,narrow electrochemical stable window and inferior mechanical strength.Polymer/inorganic composite electrolytes(PIEs)formed by adding ceramic fillers in PSEs merge the benefits of PSEs and inorganic solid-state electrolytes(ISEs),exhibiting appreciable comprehensive properties due to the abundant interfaces with unique characteristics.Some PIEs are highly compatible with high-voltage cathode and lithium metal anode,which offer desirable access to obtaining lithium metal batteries with high energy density.This review elucidates the current issues and recent advances in PIEs.The performance of PIEs was remarkably influenced by the characteristics of the fillers including type,content,morphology,arrangement and surface groups.We focus on the molecular interaction between different components in the composite environment for designing high-performance PIEs.Finally,the obstacles and opportunities for creating high-performance PIEs are outlined.This review aims to provide some theoretical guidance and direction for the development of PIEs. 展开更多
关键词 POLYMER Inorganic composite electrolytes All-solid-state lithium metal batteries FILLERS Ionic conductivity High voltage
下载PDF
Rational Design of High-Performance PEO/Ceramic Composite Solid Electrolytes for Lithium Metal Batteries 被引量:7
8
作者 Yanxia Su Fei Xu +2 位作者 Xinren Zhang Yuqian Qiu Hongqiang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期155-189,共35页
Composite solid electrolytes(CSEs)with poly(ethylene oxide)(PEO)have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li~+solvating capability,flexible pro... Composite solid electrolytes(CSEs)with poly(ethylene oxide)(PEO)have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li~+solvating capability,flexible processability and low cost.However,unsatisfactory room-temperature ionic conductivity,weak interfacial compatibility and uncontrollable Li dendrite growth seriously hinder their progress.Enormous efforts have been devoted to combining PEO with ceramics either as fillers or major matrix with the rational design of two-phase architecture,spatial distribution and content,which is anticipated to hold the key to increasing ionic conductivity and resolving interfacial compatibility within CSEs and between CSEs/electrodes.Unfortunately,a comprehensive review exclusively discussing the design,preparation and application of PEO/ceramic-based CSEs is largely lacking,in spite of tremendous reviews dealing with a broad spectrum of polymers and ceramics.Consequently,this review targets recent advances in PEO/ceramicbased CSEs,starting with a brief introduction,followed by their ionic conduction mechanism,preparation methods,and then an emphasis on resolving ionic conductivity and interfacial compatibility.Afterward,their applications in solid-state lithium metal batteries with transition metal oxides and sulfur cathodes are summarized.Finally,a summary and outlook on existing challenges and future research directions are proposed. 展开更多
关键词 composite solid electrolytes Ionic conductivity Interfacial compatibility Ion conduction pathways Li metal batteries
下载PDF
MgO-attached graphene nanosheet(MgO@GNS)reinforced magnesium matrix nanocomposite with superior mechanical,corrosion and biological performance
9
作者 S.Abazari A.Shamsipur +3 位作者 H.R.Bakhsheshi-Rad M.S.Soheilirad F.Khorashadizade S.S.Mirhosseini 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2062-2076,共15页
Magnesium(Mg)alloys are gaining great consideration as body implant materials due to their high biodegradability and biocompatibility.However,they suffer from low corrosion resistance and antibacterial activity.In thi... Magnesium(Mg)alloys are gaining great consideration as body implant materials due to their high biodegradability and biocompatibility.However,they suffer from low corrosion resistance and antibacterial activity.In this research,semi-powder metallurgy followed by hot extrusion was utilized to produce the magnesium oxide@graphene nanosheets/magnesium(MgO@GNS/Mg)composite to improve mechanical,corrosion and cytocompatibility characteristics.Investigations have revealed that the incorporation of MgO@GNS nanohybrids into Mg-based composite enhanced microhardness and compressive strength.In vitro,osteoblast cell culture tests show that using MgO@GNS nanohybrid fillers enhances osteoblast adhesion and apatite mineralization.The presence of MgO@GNS nanoparticles in the composites decreased the opening defects,micro-cracks and micro-pores of the composites thus preventing the penetration of the corrosive solution into the matrix.Studies demonstrated that the MgO@GNS/Mg composite possesses excellent antibacterial properties because of the combination of the release of MgO and physical damage to bacterium membranes caused by the sharp edges of graphene nanosheets that can effectively damage the cell wall thereby facilitating penetration into the bacterial lipid bilayer.Therefore,the MgO@GNS/Mg composite with high mechanical strength,antibacterial activity and corrosion resistance is considered to be a promising material for load-bearing implant applications. 展开更多
关键词 metal matrix composites MgO@GNS nanohybrid strengthening mechanisms antibacterial activity BIOCOMPATIBILITY
下载PDF
Effect of heat treatment on the microstructure,mechanical properties and fracture behaviors of ultra-high-strength SiC/Al-Zn-Mg-Cu composites
10
作者 Guonan Ma Shize Zhu +3 位作者 Dong Wang Peng Xue BolüXiao Zongyi Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2233-2243,共11页
A high-zinc composite,12vol%SiC/Al-13.3 Zn-3.27 Mg-1.07Cu(wt%),with an ultra-high-strength of 781 MPa was success-fully fabricated through a powder metallurgy method,followed by an extrusion process.The effects of sol... A high-zinc composite,12vol%SiC/Al-13.3 Zn-3.27 Mg-1.07Cu(wt%),with an ultra-high-strength of 781 MPa was success-fully fabricated through a powder metallurgy method,followed by an extrusion process.The effects of solid-solution and aging heat treat-ments on the microstructure and mechanical properties of the composite were extensively investigated.Compared with a single-stage sol-id-solution treatment,a two-stage solid-solution treatment(470℃/1 h+480℃/1 h)exhibited a more effective solid-solution strengthen-ing owing to the higher degree of solid-solution and a more uniform microstructure.According to the aging hardness curves of the com-posite,the optimized aging parameter(100℃/22 h)was determined.Reducing the aging temperature and time resulted in finer and more uniform nanoscale precipitates but only yielded a marginal increase in tensile strength.The fractography analysis revealed that intergranu-lar cracking and interface debonding were the main fracture mechanisms in the ultra-high-strength SiC/Al-Zn-Mg-Cu composites.Weak regions,such as the SiC/Al interface containing numerous compounds and the precipitate-free zones at the high-angle grain boundaries,were identified as significant factors limiting the strength enhancement of the composite.Interfacial compounds,including MgO,MgZn2,and Cu5Zn8,reduced the interfacial bonding strength,leading to interfacial debonding. 展开更多
关键词 metal matrix composites heat treatment interfacial reaction mechanical properties fracture mechanism
下载PDF
Design,preparation,microstructure and mechanical property of the lightweight radiation-shielding Mg-Ta-Al composites basing differential temperature hot rolling
11
作者 Wenbo Luo Songya Feng +7 位作者 Xiuzhu Han Li Zhou Qinke Kong Zhiyong Xue Jianzhao Wang Mei Zhan Xianhua Chen Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2433-2446,共14页
A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiati... A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiation-dose shield effect,about 145 krad·a^(−1),which is about 17 times of traditional Mg alloy,while its surface density is only about 0.9 g·cm^(−2),reducing by 60%than that of pure Ta.The quantitate relationship between radiation-dose and the materials’thickness was also confirmed to the logistic function when the surface density is in the range of 0.6-1.5 g·cm^(−2).Meantime,the rolling parameters,interface microstructure and mechanical properties in both as-rolled and annealing treated samples were evaluated.The sheets possess a special dissimilar atoms diffusion transitional zone containing an obvious inter-diffusion Mg-Al interface and the unique micro-corrugated Ta-Al interface,as well as a thin Al film with a thickness of about 10μm.The special zone could reduce the stress concentration and enhance the strength of Mg-Ta-Al LMCs.The interface bonding strength reaches up to 54-76 MPa.The ultimate tensile strength(UTS)and yield strength(TYS)of the Mg-Ta-Al sheet were high to 413 MPa and 263 MPa,respectively,along with an elongation of 5.8%.The molecular dynamics(MD)analysis results show that the two interfaces exhibit different formation mechanism,the Mg-Al interface primarily depended on Mg/Al atoms diffusion basing point defects movement,while the Ta-Al interface with a micro-interlock pining shape formed by close-packed planes slipping during high temperature strain-induced deformation process. 展开更多
关键词 Dissimilar metals composites Mg based alloys Radiation shielding Hot rolling LIGHTWEIGHT
下载PDF
Revealing the specific role of sulfide and nano-alumina in composite solid-state electrolytes for performance-reinforced ether-nitrile copolymers
12
作者 Haoyang Yuan Changhao Tian +3 位作者 Mengyuan Song Wenjun Lin Tao Huang Aishui Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期628-636,共9页
Composite solid-state electrolytes represent a critical pathway that balances the interface compatibility and lithium-ion conductivity in all-solid-state batteries.The quest for stable and highly ion-conductive combin... Composite solid-state electrolytes represent a critical pathway that balances the interface compatibility and lithium-ion conductivity in all-solid-state batteries.The quest for stable and highly ion-conductive combinations between polymers and fillers is vital,but blind attempts are often made due to a lack of understanding of the mechanisms involved in the interaction between polymers and fillers.Herein,we employ in-situ polymerization to prepare a polymer based on an ether-nitrile copolymer with high cathode stability as the foundation and discuss the performance enhancement mechanisms of argyrodite and nano-alumina.With 1%content of sulfide interacting with the polymer at the two-phase interface,the local enhancement of lithium-ion migration capability can be achieved,avoiding the reduction in capacity due to the low ion conductivity of the passivation layer during cycling.The capacity retention after 50cycles at 0.5 C increases from 83.5%to 94.4%.Nano-alumina,through anchoring the anions and interface inhibition functions,eventually poses an initial discharge capacity of 136.8 m A h g^(-1)at 0.5 C and extends the cycling time to 1000 h without short-circuiting in lithium metal batteries.Through the combined action of dual fillers on the composite solid-state electrolyte,promising insights are provided for future material design. 展开更多
关键词 composite solid-state electrolytes Lithium metal anode Dual fillers Interfacial ionic conduction Inert nano-alumina
下载PDF
Sandwich-type composited solid polymer electrolytes to strengthen the interfacial ionic transportation and bulk conductivity for all-solid-state lithium batteries from room temperature to 120℃
13
作者 Jiewen Tan Zhen Wang +7 位作者 Jiawu Cui Zhanhui Jia Wensheng Tian Chao Wu Chengxin Peng Chengyong Shu Kang Yang Wei Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期288-295,I0007,共9页
The insurmountable charge transfer impedance at the Li metal/solid polymer electrolytes(SPEs)interface at room temperature as well as the ascending risk of short circuits at the operating temperature higher than the m... The insurmountable charge transfer impedance at the Li metal/solid polymer electrolytes(SPEs)interface at room temperature as well as the ascending risk of short circuits at the operating temperature higher than the melting point,dominantly limits their applications in solid-state batteries(SSBs).Although the inorganic filler such as CeO_(2)nanoparticle content of composite solid polymer electrolytes(CSPEs)can significantly reduce the enormous charge transfer impedance at the Li metal/SPEs interface,we found that the required content of CeO_(2)nanoparticles in SPEs varies for achieving a decent interfacial charge transfer impedance and the bulk ionic conductivity in CSPEs.In this regard,a sandwich-type composited solid polymer electrolyte with a 10%CeO_(2)CSPEs interlayer sandwiched between two 50%CeO_(2)CSPEs thin layers(sandwiched CSPEs)is constructed to simultaneously achieve low charge transfer impedance and superior ionic conductivity at 30℃.The sandwiched CSPEs allow for stable cycling of Li plating and stripping for 1000 h with 129 mV polarized voltage at 0.1 mA cm^(-2)and 30℃.In addition,the LiFePO_(4)/Sandwiched CSPEs/Li cell also exhibits exceptional cycle performance at 30℃and even elevated120℃without short circuits.Constructing multi-layered CSPEs with optimized contents of the inorganic fillers can be an efficient method for developing all solid-state PEO-based batteries with high performance at a wide range of temperatures. 展开更多
关键词 PEO-based solid electrolytes CeO_(2)nanoparticles Charge transfer impedance Sandwich-type composite electrolytes All-solid-state Li metal batteries
下载PDF
In Situ Directional Polymerization of Poly(1,3-dioxolane)Solid Electrolyte Induced by Cellulose Paper-Based Composite Separator for Lithium Metal Batteries 被引量:2
14
作者 Jian Ma Yueyue Wu +5 位作者 Hao Jiang Xin Yao Fan Zhang Xianglong Hou Xuyong Feng Hongfa Xiang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期134-143,共10页
In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,whic... In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,which employs alumina as the inorganic reinforcing material and is loaded with polymerization initiator aluminum trifluoromethanesulfonate.Based upon this,a separator-induced in situ directional polymerization technique is demonstrated,and the extra addition of initiators into liquid precursors is no longer required.The polymerization starts from the surface and interior of the separator and extends outward with the gradually dissolving of initiators into the precursor.Compared with its traditional counterpart,the separator-induced poly(1,3-dioxolane)electrolyte shows improved interfacial contact as well as appropriately mitigated polymerization rate,which are conducive to practical applications.Electrochemical measurement results show that the prepared poly(1,3-dioxolane)solid electrolyte possesses an oxidation potential up to 4.4 V and a high Li+transference number of 0.72.After 1000 cycles at 2 C rate(340 mA g^(−1)),the assembled Li||LiFePO_(4)solid battery possesses a 106.8 mAh g^(−1)discharge capacity retention and 83.5%capacity retention ratio,with high average Coulombic efficiency of 99.5%achieved.Our work may provide new ideas for the design and application of in situ polymerization technique for solid electrolytes and solid batteries. 展开更多
关键词 cellulose paper-based composite separator in situ directional polymerization lithium metal battery poly-DOL electrolyte solid-state electrolyte
下载PDF
Development of 3D bicontinuous metal-intermetallic composites through subsequent alloying process after liquid metal dealloying
15
作者 Jee Eun Jang Jihye Seong +1 位作者 Soo-Hyun Joo Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4274-4281,共8页
This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initi... This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initially, porous Ti structures are produced using the LMD process, followed by immersion in a molten Mg-3Al(wt%) metal. Due to the higher thermodynamic miscibility of Al with Ti compared to Mg, the concentration of Al in the Ti matrix increases as the immersion time increases. This results in a sequential phase transition within the Ti matrix: α-Ti → Ti_(3)Al → Ti Al. The phase transition considerably affects the hardness and strength of the composite material,with the Mg-Ti_(3)Al-Ti Al composite exhibiting a maximum hardness nearly twice as high as that of the conventional Mg-Ti composite. This innovative process holds potential for the development of various bicontinuous metal-intermetallic composites. 展开更多
关键词 Liquid metal dealloying Subsequent alloying metal–intermetallic composite 3D bicontinuous structure HARDNESS
下载PDF
Mechanical behavior of entangled metallic wire materials-polyurethane interpenetrating composites
16
作者 Xiao-yuan Zheng Zhi-ying Ren +2 位作者 Hong-bai Bai Zhang-bin Wu You-song Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期120-136,共17页
Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is pre... Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is presented in this work in order to fabricate composites with enhanced mechanical characteristics.More specifically,entangled metallic wire materials were used as the active matrix,whereas polyurethane was employed as the reinforcement elements.As a result,an entangled metallic wire material-polyurethane composite with high damping and stiffness was prepared by enforcing the vacuum infiltration method.On top of that,the mechanical properties(loss factor,energy consumption,and average stiffness)of the proposed composite materials were characterized by performing dynamic tests,and its fatigue characteristics were verified by the micro-interface bonding,as well as the macro-damage factor.The impact of the density,preloading spacing,loading amplitude,and exciting frequency on the mechanical properties of the composites were also thoroughly analyzed.The extracted results indicate that the mechanical properties of the composites were significantly enhanced than those of the pure materials due to the introduction of interface friction.Moreover,the average stiffness of the composites was about 10 times the respective value of the entangled metallic wire material.Interestingly,a rise in the loading period leads to some failure between the composite interfaces,which reduces the stiffness property but enhances the damping dissipation properties.Finally,a comprehensive dynamic mechanical model of the composites was established,while it was experimentally verified.The proposed composites possess higher damping features,i.e.,stiffness characteristics,and maintain better fatigue characteristics,which can broaden the application range of the composites.In addition,we provide a theoretical and experimental framework for the research and applications in the field of metal matrix composites. 展开更多
关键词 Entangled metallic wire material composites materials Damping property STIFFNESS Fatigue characteristics
下载PDF
Enhanced ionic conductivity in a novel composite electrolyte based on Gd-doped SnO_(2) nanotubes for ultra-long-life all-solid-state lithium metal batteries
17
作者 Lugang Zhang Nanping Deng +7 位作者 Junbao Kang Xiaoxiao Wang Hongjing Gao Yarong Liu Hao Wang Gang Wang Bowen Cheng Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期326-337,I0009,共13页
All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid elect... All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid electrolytes with favorable electrode/electrolyte interface compatibility and high ionic conductivity in a simple and scalable manner.Hence,the oxygen-vacancy-rich Gd-doped SnO_(2) nanotubes(GDS NTs)are innovatively prepared and applied to the electrolyte of all-solid-state lithium metal batteries for the first time.The addition of GDS NTs can validly construct long-range co ntinuous ion transport networks in the poly(ethylene oxide)(PEO)-based system and greatly improve the mechanical properties of the electrolyte.Compared to the PEO-based electrolyte,the composite electrolyte displays a higher lithium ion conductivity of 2.41×10^(-4) S cm^(-1) at 30℃,a higher lithium ion transference number up to 0.62 and a wider electrochemical window of 5 V at 50℃.In addition,the composite electrolyte manifests outstanding compatibility with high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)cathode,LiFePO4 cathode and lithium metal anode.The assembled Li/Li symmetric battery exhibits stable Li plating/stripping cycling performance,which can cycle steadily for 1500 h at a capacity of 0.3 mA h cm^(-2).And Li/LiFePO4 battery still maintains a high capacity of 131.54 mA h g^(-1) at 0.5C after 800 cycles,which has a superior capacity retention rate of 93.2%.The obtained novel composite electrolyte has promising application prospects in the field of all-solid-state lithium metal cells. 展开更多
关键词 All-solid-state lithium metal batteries Gd-doped SnO2 nanotubes Interfacial stability Oxygen vacancies Solid-state composite electrolytes
下载PDF
Development and Characterization of Aluminium-Based Metal Matrix Composites
18
作者 M. A. Gafur Al Fahad Ahmed +1 位作者 Raisul Abrar Surya Sabrin Soshi 《Materials Sciences and Applications》 CAS 2023年第1期1-19,共19页
Aluminum based metal matrix composites were fabricated using stir casting where silicon carbide and alumina were the reinforcements. Different types of properties (physical-density, mechanical-tensile, hardness, chemi... Aluminum based metal matrix composites were fabricated using stir casting where silicon carbide and alumina were the reinforcements. Different types of properties (physical-density, mechanical-tensile, hardness, chemical-corrosion etc.) were measured and compared with base metals/alloys. The properties were significantly varied. The highest density was obtained for pure aluminium with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-4032 alloy. The highest hardness was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for pure Al with 5% Al<sub>2</sub>O<sub>3</sub>. The highest strength was obtained for AA-6061 with 5% coarse SiC whereas the lowest was obtained for pure Al. The highest impact strength was obtained for AA-4032 with 5% Al<sub>2</sub>O<sub>3</sub> whereas the lowest was obtained for AA-6061. The corrosion resistance of all composites was lower than that of the base materials. 展开更多
关键词 Al AA-6061 AA-4032 SiC AL2O3 Stir-Casting metal Matrix composite MMC NANOcompositeS
下载PDF
Hot deformation behaviors of 35% SiC_p/2024Al metal matrix composites 被引量:6
19
作者 郝世明 谢敬佩 +3 位作者 王爱琴 王文焱 李继文 孙浩亮 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2468-2474,共7页
The hot deformation behaviors of 35%SiCp/2024 aluminum alloy composites were studied by hot compression tests using Gleeble-1500D thermo-mechanical simulator at temperatures ranging from 350 to 500 °C under strai... The hot deformation behaviors of 35%SiCp/2024 aluminum alloy composites were studied by hot compression tests using Gleeble-1500D thermo-mechanical simulator at temperatures ranging from 350 to 500 °C under strain rates of 0.01-10 s-1. The true stress-true strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the flow stress decreases with the increase of deformation temperature at a constant strain rate, and increases with the increase of strain rate at constant temperature, indicating that composite is a positive strain rate sensitive material. The flow stress behavior of composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 225.4 kJ/mol. To demonstrate the potential workability, the stable zones and the instability zones in the processing map were identified and verified through micrographs. Considering processing map and microstructure, the hot deformation should be carried out at the temperature of 500 °C and the strain rate of 0.1-1 s-1. 展开更多
关键词 metal matrix composites constitutive equations processing map MICROSTRUCTURE powder metallurgy
下载PDF
Penetrative and migratory behavior of alkali metal in different binder based TiB_2-C composite cathodes 被引量:7
20
作者 方钊 伍小雷 +2 位作者 俞娟 李林波 朱军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期1220-1230,共11页
In electrolyte melts containing K at low temperature, the penetrative and migratory path of alkali metals (K and Na) in pitch, furan, phenolic aldehyde and epoxy based TiB2-C composite cathodes during the electrolys... In electrolyte melts containing K at low temperature, the penetrative and migratory path of alkali metals (K and Na) in pitch, furan, phenolic aldehyde and epoxy based TiB2-C composite cathodes during the electrolysis process were studied by EDS and self-made modified Rapoport apparatus. The electrolysis expansion rates, the diffusion coefficients of the alkali metals and the corrosion rates of the composite cathode were also calculated and discussed. The results show that no matter what kind of binder is used, alkali metals have the same penetrative path in composite cathodes:firstly in pore, then in binder and finally in carbonaceous aggregates. K and Na penetrate into both binder and carbonaceous aggregates, which leads to the expansion of composite cathodes, and K has stronger penetration ability than Na. Electrolysis expansion rate of resin based composite cathode is smaller than that of pitch based composite cathodes, and so do the diffusion coefficient and corrosion rate. Resin based composite cathode has better resistance ability to the penetration of alkali metals than pith based composite cathode, and phenolic aldehyde based composite cathode exhibits the strongest resistance ability. The penetration rate, the diffusion coefficient of alkali metals in phenolic aldehyde based TiB2-C composite cathode and the corresponding corrosion rate are 4.72 mm/h, 2.24×10^-5 cm^2/s and 2.31 mm/a, respectively. 展开更多
关键词 aluminum electrolysis PENETRATION migration alkali metal TiB2-C composite cathode corrosion resistance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部