The mechanism of contact electrification between metals was studied using the first-principles method, taking the Ag-Fe contact as an example. Charge population, charge density difference, the orbitals and densities o...The mechanism of contact electrification between metals was studied using the first-principles method, taking the Ag-Fe contact as an example. Charge population, charge density difference, the orbitals and densities of states (DOS) were calculated to study the electronic properties of the contacting interfacial atoms. Based on the calculation, the amount of contact charge was obtained. The investigation revealed that the electrons near Fermi levels with higher energies transfer between the outermost orbitals (s orbitals for Ag and d orbitals for Fe). Meanwhile, polarized covalent bonds form between the d electrons in the deep energy states. These two effects together lead to an increase of charge magnitude at the interface. Also, the electrons responsible for electrification can be determined by their energies and orbitals.展开更多
Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order ...Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order of 1-5 kΩ/□. The intrinsic nature of graphene leads to higher contact resistance yielding into the outstanding properties of the material. We design a graphene matrix with minimized sheet resistance of 0.185 kΩ/□ with Ag contacts. The developed matrices on silicon substrates provide a variety of transistor design options for subsequent fabrication. The graphene layer is developed over 400 nm nickel in such a way as to analyze hypersensitive electrical properties of the interface for exfoliation. This work identifies potential of the design in the applicability of few-layer GFETs with less process steps with the help of analyzing the effect of metal contact and post-process anneMing on its electrical fabrication.展开更多
The geometries and electronic properties of SnSe/metal contact have been investigated using first-principles calcula- tion. It is found that the geometries of monolayer SnSe were affected slightly when SnSe adsorbs on...The geometries and electronic properties of SnSe/metal contact have been investigated using first-principles calcula- tion. It is found that the geometries of monolayer SnSe were affected slightly when SnSe adsorbs on M (M = Ag,Au,Ta) substrate. Compared with the corresponding free-standing monolayer SnSe, the adsorbed SnSe undergoes a semiconductor- to-metal transition. The potential difference AV indicates that SnSefra contact is the best candidate for the Schottky contact of the three SnSe/M contacts. Two types of current-in-plane (CIP) structure, where a freestanding monolayer SnSe is con- nected to SnSe/M, are identified as the n-type CIP structure in SnSe/Ag contact and p-type CIP structure in SnSe/Au and SnSe/Ta contact. The results can stimulate further investigation for the multifunctional SnSe/metal contact.展开更多
Considering the tunneling effect and the Schottky effect,the metal semiconductor contact is simulated by using self consistent ensemble Monte Carlo method.Under different biases or at different barrier heights,the i...Considering the tunneling effect and the Schottky effect,the metal semiconductor contact is simulated by using self consistent ensemble Monte Carlo method.Under different biases or at different barrier heights,the investigation into the tunneling current indicates that the tunneling effect is of great importance under reverse biases.The Schottky barrier diode current due to Schottky effect is in agreement with the theoretical one.The barrier lowering is found a profound effect on the current transport at the metal semiconductor interface.展开更多
For thermally stable or high-temperature operating,Schottky contact utilizing refractory metal nitride,TiN,MoN and ZrN,on n-GaN were evaluated.The refractory metal nitride films were formed by reactive sputtering in A...For thermally stable or high-temperature operating,Schottky contact utilizing refractory metal nitride,TiN,MoN and ZrN,on n-GaN were evaluated.The refractory metal nitride films were formed by reactive sputtering in Ar and N2 ambient.Current-voltage characteristics show that ideality factors of 1.09-1.22 and barrier heights of 0.66-0.75 eV was obtained for the three metal nitrides.For the ZrN contact,the ideality factor and barrier height of became 1.06 and 0.77 eV,respectively,after 800 ℃ annealing.AlGaN/GaN heterostructure FET with TiN gate was also investigated.No obvious degradation was found for the TiN-gate device even after thermal treatment at 850 ℃.This shows that Schottky contact utilizing refractory metal nitride on GaN has the potential for thermal stability or high-temperature operating.展开更多
The purpose of this work is to analyze the electrical properties of the metal–semiconductor contact(MSC)in the framework of the theory of complex systems.The effect of inhomogeneity of the different microstructures:p...The purpose of this work is to analyze the electrical properties of the metal–semiconductor contact(MSC)in the framework of the theory of complex systems.The effect of inhomogeneity of the different microstructures:polycrystalline,monocrystalline,amorphous metal–semiconductor contact surface is investigated,considering a Schottky diode(SD)as a parallel connection of numerous subdiodes.It has been shown that the polycrystallinity of the metal translates a homogeneous contact into a complex system,which consists of parallel connected numerous elementary contacts having different properties and parameters.展开更多
Self-powered devices are widely used in the detection and sensing fields.Asymmetric metal contacts provide an effective way to obtain self-powered devices.Finding two stable metallic electrode materials with large wor...Self-powered devices are widely used in the detection and sensing fields.Asymmetric metal contacts provide an effective way to obtain self-powered devices.Finding two stable metallic electrode materials with large work function differences is the key to obtain highly efficient asymmetric metal contacts structures.However,common metal electrode materials have similar and high work functions,making it difficult to form an asymmetric contacts structure with a large work function difference.Herein,Mo2C crystals with low work function(3.8 eV) was obtained by chemical vapor deposition(CVD) method.The large work function difference between Mo2C and Au allowed us to synthesize an efficient Mo2C/MoS2/Au photodetector with asymmetric metal contact structure,which enables light detection without external electric power.We believe that this novel device provides a new direcfor the design of miniature self-powered photodetectors.These results also highlight the great potential of ultrathin Mo2C prepared by CVD in heterojunction device applications.展开更多
When relative motion occurs between a liquid and a solid, the two phases carry electric charge with opposite signs. The created charge easily accumulates in the liquid, and the amount of the charge carried in an insul...When relative motion occurs between a liquid and a solid, the two phases carry electric charge with opposite signs. The created charge easily accumulates in the liquid, and the amount of the charge carried in an insulated liquid refers to many factors, such as contact area with the solid surface, the contact time, and so forth. However, current theories agree that the amount of charge created during flow electrification is proportional to the contact surface. In this paper, the classical wall current theory is applied to establish an interfacial electrical double-layer model of flow electrification phenomena when an insulated liquid passes over metal pipe surface. Meanwhile, in conjunction with charge relaxation function, the relation between the charge density and flow velocity, the contact time and the contact area is obtained during the liquid flowing process. The experimental result demonstrates that the flowing charge carried in the insulated liquid is not simply proportional to the contact area, but has a non-linear dependence on the contact area and the contact time. Moreover, down flow experimental equipment pipes of different length and diameter, and dielectric hydraulic oil VG46 are used in an experimental study of laminar flow, in order to understand electrification phenomena in dielectric liquid flowing over metal pipes of different length and aperture. If they both increase linearly, charge relaxation will increase exponentially. As a result, the test result verifies related theoretical analysis, and the method given provides a theoretical basis to analyze interracial electrical phenomena.展开更多
Sub-threshold characteristics of the dual material gate 4H-SiC MESFET (DMGFET) are investigated and the analytical models to describe the drain-induced barrier lowering (DIBL) effect are derived by solving one- an...Sub-threshold characteristics of the dual material gate 4H-SiC MESFET (DMGFET) are investigated and the analytical models to describe the drain-induced barrier lowering (DIBL) effect are derived by solving one- and two- dimensional Poisson's equations. Using these models, we calculate the bottom potential of the channel and the threshold voltage shift, which characterize the drain-induced barrier lowering (DIBL) effect. The calculated results reveal that the dual material gate (DMG) structure alleviates the deterioration of the threshold voltage and thus suppresses the DIBL effect due to the introduced step function, which originates from the work function difference of the two gate materials when compared with the conventional single material gate metal-semiconductor field-effect transistor (SMGFET).展开更多
Liquid metal alloys(LMAs) are the potential candidates of thermal interface materials(TIMs) for electronics cooling.In the present work, buffer layers of Ag, Ti, Cu, Ni, Mo, and W were deposited on polished Cu plates ...Liquid metal alloys(LMAs) are the potential candidates of thermal interface materials(TIMs) for electronics cooling.In the present work, buffer layers of Ag, Ti, Cu, Ni, Mo, and W were deposited on polished Cu plates by DC magnetron sputtering, the contact angles of de-ionized water and diiodomethane on the buffer layers were measured by an easy drop shape analyzer and the surface free energies(SFEs) of the buffer layers were calculated by the Owens–Wendt–Kaelble equation. Samples were prepared by sandwiching the filmed Cu plates and LMAs. The thermal properties of the samples were measured by laser flash analysis method. The SFE of the buffer layer has a strong influence on the interface heat transfer, whereas the measurement temperature has no obvious effect on the thermal properties of the samples. As the SFE of the buffer layer increases, the wettability, thermal diffusivity, and thermal conductivity are enhanced, and the thermal contact resistance is decreased.展开更多
A meshfree method based on reproducing kernel approximation and point collocation is presented for analysis of metal ring compression. The point collocation method is a true meshfree method without the employment of a...A meshfree method based on reproducing kernel approximation and point collocation is presented for analysis of metal ring compression. The point collocation method is a true meshfree method without the employment of a background mesh. It is shown that, in a point collocation approach, the remesh problem because of the mesh distortion in FEM (finite element method) and the low efficiency in Galerkin-based meshfree method are avoided. The corrected kernel functions are introduced to the stabilization of free-surface boundary conditions. The solution of symmetric ring compression problem is compared with a conventional finite element solution, and reasonable results have been obtained.展开更多
Pinus massoniana L. was thermally treated with low melting point alloy as heating medium to investigate the strength properties changes. Contact angle, color and scanning electron microscopy were recorded to assess th...Pinus massoniana L. was thermally treated with low melting point alloy as heating medium to investigate the strength properties changes. Contact angle, color and scanning electron microscopy were recorded to assess the effectiveness of the treatment. Samples were pre-treated in a micro-wave for 5 min followed by metal bath heat treatment at 150, 180, and 210 °C for 2, 4, and 8 h,respectively. Strength properties of metal bath treated wood were decreased with increase temperature and time.Density, modulus of rupture, impact bending, modulus of elasticity were reduced for all treatments. Maximum compressive strength slightly increased at 150 °C for 4 h followed by gradual reduction. The Janka hardness was reduced in the tangential and radial directions. Treatment of the wood at 210 °C for 8 h caused the wood to become brittle and rupture. The contact angle was considerably higher after thermal treatment. The color of the wood became darker with increasing temperature of thermal treatment. Micrographs of the heat-treated samples showed damage to the cell wall with increase in temperature. Metal bath heat treatment of wood was carried out successfully and some strength properties were reduced.展开更多
Membrane separation processes have been widely applied in the treatment of wastewater. Polysulphone (PSF) membranes are the most common membranes used in ultrafiltration of wastewater due to its mechanical robustness ...Membrane separation processes have been widely applied in the treatment of wastewater. Polysulphone (PSF) membranes are the most common membranes used in ultrafiltration of wastewater due to its mechanical robustness and structural and chemical stability. Unfortunately these membranes are mostly hydrophobic by nature and therefore highly susceptible to fouling. Many studies have been conducted to increase the hydrophilic properties of the polysul-phone/ polyethersulfone membrane surface, more recently metal nanoparticles have been added to the polymer matrix in order to reduce fouling potential and increase membrane performance. TiO2 nanoparticles have proven successful in mitigating fouling of organic matter onto PES. Embedded Ag nanoparticles have improved virus removal from wastewater due to the bactericidal properties of silver. Al2O3 and most recently ZrO2 nanoparticles reduced the fouling rate of polyethersulfone membranes in wastewater, while the latter also showed lower flux decline of the composite membrane. These metal nanoparticles all impart specific properties onto the membrane surface. Scanning electron microscopy, steady state fouling rate and contact angle measurements are membrane characterisation techniques discussed in this review that reveal specific changes to membrane properties brought about by metal nanoparticles. This paper reviews the most recent developments and shortcomings of metal nanocomposite polysulfone and polyethersulfone (PES) membranes and strives to identify specific focus areas to consider in future research.展开更多
Based on existing algorithms, a newly developed contact search algorithm is proposed. The new algorithm consists of global search, local searching, local tracking and penetration calculation processes. It requires no ...Based on existing algorithms, a newly developed contact search algorithm is proposed. The new algorithm consists of global search, local searching, local tracking and penetration calculation processes. It requires no iteration steps. It can deal with not only general tool surfaces with vertical walls, but also tool surfaces meshed with elements having very poor aspect ratios. It is demonstrated that the FE code employing this new contact search algorithm becomes more reliable, efficient and accurate for sheet metal forming simulation than conventional ones.展开更多
The protective effect of modified nanodiamonds (MND) under the action of cobalt and nickel ions on the skin of Guinea pigs was shown. At the action of chromium ions on the skin of animals, the protective effect of MND...The protective effect of modified nanodiamonds (MND) under the action of cobalt and nickel ions on the skin of Guinea pigs was shown. At the action of chromium ions on the skin of animals, the protective effect of MND was not found. The differences are related to different adsorption properties of MND to the investigated colored metal ions. It is shown in vitro that MND can adsorb ions of cobalt and nickel and don’t bind ions of chromium from aqueous medium. The perspectives using of MND as a new drug for the prevention allergic dermatitis caused by action of bivalent ions of metals are discussed.展开更多
The contact pressure acting on the sheet/tools interface has been studied because of growing the concern about the wear of tools. Recent studies make use of numerical simulation software to evaluate and correlate this...The contact pressure acting on the sheet/tools interface has been studied because of growing the concern about the wear of tools. Recent studies make use of numerical simulation software to evaluate and correlate this pressure with the friction and wear generated. Since there are many studies that determine the coefficient of friction in sheet metal forming by bending under tension (BUT) test, the contact pressure between the pin and the sheet was measured using a film that has the ability to record the applied pressure. The vertical force applied to pin was also measured. The results indicate that the vertical force is more accurate to set the contact pressure that using equations predetermined. It was also observed that the contact area between the sheet and the pin is always smaller than the area calculated geometrically. The friction coefficient was determined for the BUT test through several equations proposed by various authors in order to check if there is much variation between the results. It was observed that the friction coefficient showed little variation for each equation, and each one can be used. The material used was the commercially pure aluminum, alloy Al1100.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50823003 and 90923018)
文摘The mechanism of contact electrification between metals was studied using the first-principles method, taking the Ag-Fe contact as an example. Charge population, charge density difference, the orbitals and densities of states (DOS) were calculated to study the electronic properties of the contacting interfacial atoms. Based on the calculation, the amount of contact charge was obtained. The investigation revealed that the electrons near Fermi levels with higher energies transfer between the outermost orbitals (s orbitals for Ag and d orbitals for Fe). Meanwhile, polarized covalent bonds form between the d electrons in the deep energy states. These two effects together lead to an increase of charge magnitude at the interface. Also, the electrons responsible for electrification can be determined by their energies and orbitals.
文摘Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order of 1-5 kΩ/□. The intrinsic nature of graphene leads to higher contact resistance yielding into the outstanding properties of the material. We design a graphene matrix with minimized sheet resistance of 0.185 kΩ/□ with Ag contacts. The developed matrices on silicon substrates provide a variety of transistor design options for subsequent fabrication. The graphene layer is developed over 400 nm nickel in such a way as to analyze hypersensitive electrical properties of the interface for exfoliation. This work identifies potential of the design in the applicability of few-layer GFETs with less process steps with the help of analyzing the effect of metal contact and post-process anneMing on its electrical fabrication.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1304518 and U1404109)
文摘The geometries and electronic properties of SnSe/metal contact have been investigated using first-principles calcula- tion. It is found that the geometries of monolayer SnSe were affected slightly when SnSe adsorbs on M (M = Ag,Au,Ta) substrate. Compared with the corresponding free-standing monolayer SnSe, the adsorbed SnSe undergoes a semiconductor- to-metal transition. The potential difference AV indicates that SnSefra contact is the best candidate for the Schottky contact of the three SnSe/M contacts. Two types of current-in-plane (CIP) structure, where a freestanding monolayer SnSe is con- nected to SnSe/M, are identified as the n-type CIP structure in SnSe/Ag contact and p-type CIP structure in SnSe/Au and SnSe/Ta contact. The results can stimulate further investigation for the multifunctional SnSe/metal contact.
文摘Considering the tunneling effect and the Schottky effect,the metal semiconductor contact is simulated by using self consistent ensemble Monte Carlo method.Under different biases or at different barrier heights,the investigation into the tunneling current indicates that the tunneling effect is of great importance under reverse biases.The Schottky barrier diode current due to Schottky effect is in agreement with the theoretical one.The barrier lowering is found a profound effect on the current transport at the metal semiconductor interface.
文摘For thermally stable or high-temperature operating,Schottky contact utilizing refractory metal nitride,TiN,MoN and ZrN,on n-GaN were evaluated.The refractory metal nitride films were formed by reactive sputtering in Ar and N2 ambient.Current-voltage characteristics show that ideality factors of 1.09-1.22 and barrier heights of 0.66-0.75 eV was obtained for the three metal nitrides.For the ZrN contact,the ideality factor and barrier height of became 1.06 and 0.77 eV,respectively,after 800 ℃ annealing.AlGaN/GaN heterostructure FET with TiN gate was also investigated.No obvious degradation was found for the TiN-gate device even after thermal treatment at 850 ℃.This shows that Schottky contact utilizing refractory metal nitride on GaN has the potential for thermal stability or high-temperature operating.
文摘The purpose of this work is to analyze the electrical properties of the metal–semiconductor contact(MSC)in the framework of the theory of complex systems.The effect of inhomogeneity of the different microstructures:polycrystalline,monocrystalline,amorphous metal–semiconductor contact surface is investigated,considering a Schottky diode(SD)as a parallel connection of numerous subdiodes.It has been shown that the polycrystallinity of the metal translates a homogeneous contact into a complex system,which consists of parallel connected numerous elementary contacts having different properties and parameters.
基金supported by the National Natural Science Foundation of China(11674113,U1765105)the support of experimental facilities in WNLO of HUSTAnalysis and Testing Center of HUST for support
文摘Self-powered devices are widely used in the detection and sensing fields.Asymmetric metal contacts provide an effective way to obtain self-powered devices.Finding two stable metallic electrode materials with large work function differences is the key to obtain highly efficient asymmetric metal contacts structures.However,common metal electrode materials have similar and high work functions,making it difficult to form an asymmetric contacts structure with a large work function difference.Herein,Mo2C crystals with low work function(3.8 eV) was obtained by chemical vapor deposition(CVD) method.The large work function difference between Mo2C and Au allowed us to synthesize an efficient Mo2C/MoS2/Au photodetector with asymmetric metal contact structure,which enables light detection without external electric power.We believe that this novel device provides a new direcfor the design of miniature self-powered photodetectors.These results also highlight the great potential of ultrathin Mo2C prepared by CVD in heterojunction device applications.
基金supported by Qianjiang Talent Project Foundation of China(Grant No. 2010R10013)
文摘When relative motion occurs between a liquid and a solid, the two phases carry electric charge with opposite signs. The created charge easily accumulates in the liquid, and the amount of the charge carried in an insulated liquid refers to many factors, such as contact area with the solid surface, the contact time, and so forth. However, current theories agree that the amount of charge created during flow electrification is proportional to the contact surface. In this paper, the classical wall current theory is applied to establish an interfacial electrical double-layer model of flow electrification phenomena when an insulated liquid passes over metal pipe surface. Meanwhile, in conjunction with charge relaxation function, the relation between the charge density and flow velocity, the contact time and the contact area is obtained during the liquid flowing process. The experimental result demonstrates that the flowing charge carried in the insulated liquid is not simply proportional to the contact area, but has a non-linear dependence on the contact area and the contact time. Moreover, down flow experimental equipment pipes of different length and diameter, and dielectric hydraulic oil VG46 are used in an experimental study of laminar flow, in order to understand electrification phenomena in dielectric liquid flowing over metal pipes of different length and aperture. If they both increase linearly, charge relaxation will increase exponentially. As a result, the test result verifies related theoretical analysis, and the method given provides a theoretical basis to analyze interracial electrical phenomena.
基金Project supported by the Pre-research Foundation from the National Ministries and Commissions of China (GrantNo.51308030201)
文摘Sub-threshold characteristics of the dual material gate 4H-SiC MESFET (DMGFET) are investigated and the analytical models to describe the drain-induced barrier lowering (DIBL) effect are derived by solving one- and two- dimensional Poisson's equations. Using these models, we calculate the bottom potential of the channel and the threshold voltage shift, which characterize the drain-induced barrier lowering (DIBL) effect. The calculated results reveal that the dual material gate (DMG) structure alleviates the deterioration of the threshold voltage and thus suppresses the DIBL effect due to the introduced step function, which originates from the work function difference of the two gate materials when compared with the conventional single material gate metal-semiconductor field-effect transistor (SMGFET).
基金Project supported by the National Natural Science Foundation of China(Grant No.11874191)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2016FM38)
文摘Liquid metal alloys(LMAs) are the potential candidates of thermal interface materials(TIMs) for electronics cooling.In the present work, buffer layers of Ag, Ti, Cu, Ni, Mo, and W were deposited on polished Cu plates by DC magnetron sputtering, the contact angles of de-ionized water and diiodomethane on the buffer layers were measured by an easy drop shape analyzer and the surface free energies(SFEs) of the buffer layers were calculated by the Owens–Wendt–Kaelble equation. Samples were prepared by sandwiching the filmed Cu plates and LMAs. The thermal properties of the samples were measured by laser flash analysis method. The SFE of the buffer layer has a strong influence on the interface heat transfer, whereas the measurement temperature has no obvious effect on the thermal properties of the samples. As the SFE of the buffer layer increases, the wettability, thermal diffusivity, and thermal conductivity are enhanced, and the thermal contact resistance is decreased.
基金the National Natural Science Foundation of China (No. 50275059).
文摘A meshfree method based on reproducing kernel approximation and point collocation is presented for analysis of metal ring compression. The point collocation method is a true meshfree method without the employment of a background mesh. It is shown that, in a point collocation approach, the remesh problem because of the mesh distortion in FEM (finite element method) and the low efficiency in Galerkin-based meshfree method are avoided. The corrected kernel functions are introduced to the stabilization of free-surface boundary conditions. The solution of symmetric ring compression problem is compared with a conventional finite element solution, and reasonable results have been obtained.
基金financially supported by the Special Scientific Research Fund for Public Service Sectors of Forestry(Grant No.201504603)Science and Technology Projects of Fujian Province(2014NZ003)the National Natural Science Foundation of China(Grant Nos.31370560,31170520)
文摘Pinus massoniana L. was thermally treated with low melting point alloy as heating medium to investigate the strength properties changes. Contact angle, color and scanning electron microscopy were recorded to assess the effectiveness of the treatment. Samples were pre-treated in a micro-wave for 5 min followed by metal bath heat treatment at 150, 180, and 210 °C for 2, 4, and 8 h,respectively. Strength properties of metal bath treated wood were decreased with increase temperature and time.Density, modulus of rupture, impact bending, modulus of elasticity were reduced for all treatments. Maximum compressive strength slightly increased at 150 °C for 4 h followed by gradual reduction. The Janka hardness was reduced in the tangential and radial directions. Treatment of the wood at 210 °C for 8 h caused the wood to become brittle and rupture. The contact angle was considerably higher after thermal treatment. The color of the wood became darker with increasing temperature of thermal treatment. Micrographs of the heat-treated samples showed damage to the cell wall with increase in temperature. Metal bath heat treatment of wood was carried out successfully and some strength properties were reduced.
文摘Membrane separation processes have been widely applied in the treatment of wastewater. Polysulphone (PSF) membranes are the most common membranes used in ultrafiltration of wastewater due to its mechanical robustness and structural and chemical stability. Unfortunately these membranes are mostly hydrophobic by nature and therefore highly susceptible to fouling. Many studies have been conducted to increase the hydrophilic properties of the polysul-phone/ polyethersulfone membrane surface, more recently metal nanoparticles have been added to the polymer matrix in order to reduce fouling potential and increase membrane performance. TiO2 nanoparticles have proven successful in mitigating fouling of organic matter onto PES. Embedded Ag nanoparticles have improved virus removal from wastewater due to the bactericidal properties of silver. Al2O3 and most recently ZrO2 nanoparticles reduced the fouling rate of polyethersulfone membranes in wastewater, while the latter also showed lower flux decline of the composite membrane. These metal nanoparticles all impart specific properties onto the membrane surface. Scanning electron microscopy, steady state fouling rate and contact angle measurements are membrane characterisation techniques discussed in this review that reveal specific changes to membrane properties brought about by metal nanoparticles. This paper reviews the most recent developments and shortcomings of metal nanocomposite polysulfone and polyethersulfone (PES) membranes and strives to identify specific focus areas to consider in future research.
基金the National Natural Science F oundation of China (5 9875 0 2 5 ) and Excellent Young Teacher Founda-tion of the Educational Departm ent of China
文摘Based on existing algorithms, a newly developed contact search algorithm is proposed. The new algorithm consists of global search, local searching, local tracking and penetration calculation processes. It requires no iteration steps. It can deal with not only general tool surfaces with vertical walls, but also tool surfaces meshed with elements having very poor aspect ratios. It is demonstrated that the FE code employing this new contact search algorithm becomes more reliable, efficient and accurate for sheet metal forming simulation than conventional ones.
文摘The protective effect of modified nanodiamonds (MND) under the action of cobalt and nickel ions on the skin of Guinea pigs was shown. At the action of chromium ions on the skin of animals, the protective effect of MND was not found. The differences are related to different adsorption properties of MND to the investigated colored metal ions. It is shown in vitro that MND can adsorb ions of cobalt and nickel and don’t bind ions of chromium from aqueous medium. The perspectives using of MND as a new drug for the prevention allergic dermatitis caused by action of bivalent ions of metals are discussed.
文摘The contact pressure acting on the sheet/tools interface has been studied because of growing the concern about the wear of tools. Recent studies make use of numerical simulation software to evaluate and correlate this pressure with the friction and wear generated. Since there are many studies that determine the coefficient of friction in sheet metal forming by bending under tension (BUT) test, the contact pressure between the pin and the sheet was measured using a film that has the ability to record the applied pressure. The vertical force applied to pin was also measured. The results indicate that the vertical force is more accurate to set the contact pressure that using equations predetermined. It was also observed that the contact area between the sheet and the pin is always smaller than the area calculated geometrically. The friction coefficient was determined for the BUT test through several equations proposed by various authors in order to check if there is much variation between the results. It was observed that the friction coefficient showed little variation for each equation, and each one can be used. The material used was the commercially pure aluminum, alloy Al1100.