The aseismic design of cable-stayed bridges in the transverse direction with newly proposed metallic dampers that can accommodate both longitudinal and transverse movement of the deck has recently been considered.This...The aseismic design of cable-stayed bridges in the transverse direction with newly proposed metallic dampers that can accommodate both longitudinal and transverse movement of the deck has recently been considered.This work focuses on developing a simplified method to design an appropriate metallic damper.The seismic performance of cablestayed bridges with different damper stiffness,main span lengths,tower shapes and types of deck in the transverse direction are investigated.The transverse displacement of the deck of a cable-stayed bridge increases significantly with the increment of the damper stiffness,which proves that the design of the damper stiffness is crucial.A simplified model considering the damper stiffness,cable system and tower in the transverse direction is developed to evaluate the period and lateral displacement of a complicated cable-stayed bridge.Based on the simplified model,a design method is proposed and assessed using two cable-stayed bridges as examples.The results show that metallic dampers can be designed with high efficiency,and the optimal ductility of the damper can be selected.展开更多
As an effort to minimize material utilization, seismic steel dampers designed to deform inelastically in an in-plane flexural mode have attracted serious attention recently. This paper presents a new type of metallic ...As an effort to minimize material utilization, seismic steel dampers designed to deform inelastically in an in-plane flexural mode have attracted serious attention recently. This paper presents a new type of metallic yielding damper referred to as the in-plane arch-shaped damper modified from its portal frame-shaped counterpart by replacing the straight beam with a circular arch to minimize the effects of stress concentration and warping, and therefore to avoid premature failure. Component tests of both the portal frame-shaped and arch-shaped in-plane dampers were conducted for comparison. Hysteresis loops obtained from the component tests under cyclic loads indicate substantial improvement on the energydissipative characteristics of the proposed damper. Moreover, seismic performance assessment of the proposed damper was carried out further via shaking table tests of a five-story model frame. Encouraging results have been achieved in terms of acceleration reduction, damping enhancement and peak suppression of the frequency response functions, suggesting the potential of the proposed device to be used in earthquake-resisting systems.展开更多
Recur to multi-hole and better elastic characteristics of metal rubber (MR), a new squeezed film damper with MR (SFD/MR) throttle ring installed on the end of MR and MR damping ring installed on the radial directi...Recur to multi-hole and better elastic characteristics of metal rubber (MR), a new squeezed film damper with MR (SFD/MR) throttle ring installed on the end of MR and MR damping ring installed on the radial direction of MR is implemented. Based on the D'alembert principle, a locomotion equation and the mathematical model of stationary response of SFD/MR system is put forward. It proves that the SFD/MR has better ability to resist unbalance loads than the traditional SFD after the stationary dynamic characteristics of the traditional SFD and the new SFD/MR are researched.展开更多
Molecular dynamics (MD) simulations are performed to investigate the wettability of liquid metal on the metal sub- strate. Results show that there exists different wettability on the different metal substrates, whic...Molecular dynamics (MD) simulations are performed to investigate the wettability of liquid metal on the metal sub- strate. Results show that there exists different wettability on the different metal substrates, which is mainly determined by the interaction between the liquid and the substrate. The liquid metal is more likely to wet the same kind of metal substrate, which attracts the liquid metal to one side on the hybrid substrate. Exchanging the liquid metal and substrate metal has no effect on the wettability between these two metals. Moreover, the study of metal drop coalescing indicates that the metal substrate can significantly affect the coalescence behavior, in which the changeable wettability of liquid metal plays a predominant role. These studies demonstrate that the wetting behavior of liquid metal can be controlled by choosing the suitable metal substrate.展开更多
Squeeze oil film damper are widely used in small high-speed aeroengine.But they are all made of high-hardness alloy steel. In order to improve their vibration absorption performance a new style of soft metal plated da...Squeeze oil film damper are widely used in small high-speed aeroengine.But they are all made of high-hardness alloy steel. In order to improve their vibration absorption performance a new style of soft metal plated damper has been studied. A coat of soft metal is plated on inner surface of the oil film ring, the surface will be deformed to some extent under the effect of oil film pressure. The characteristics of such dampers are calculated and analysed. Result shows that, compared with common damper, the new style damper can change oil film pressure distribution, enhance oil film damping, decrease stiffness, and reduce the force transfered to casing.展开更多
The formation of mono-atomic tantalum(Ta)metallic glass(MG)through ultrafast liquid cooling is investigated by ab-initio molecular dynamics(MD)simulations.It is found that there exists nearly golden ratio order(NGRO)b...The formation of mono-atomic tantalum(Ta)metallic glass(MG)through ultrafast liquid cooling is investigated by ab-initio molecular dynamics(MD)simulations.It is found that there exists nearly golden ratio order(NGRO)between the nearest and second nearest atoms in Ta MG,which has been indirectly confirmed by Khmich et al.and Liang et al..The NGRO is another universal structural feature in metallic glass besides the local five-fold symmetry(LFFS).Further analyzing of electronic structure shows that the obvious orientation of covalent bond could be attributed to the NGRO in amorphous Ta at 300 K.展开更多
This study presents the first stage of a multi-scale numerical framework designed to predict the non-linear constitutive behavior of metal-composite interfaces in titanium-graphite fiber metal laminates. Scanning elec...This study presents the first stage of a multi-scale numerical framework designed to predict the non-linear constitutive behavior of metal-composite interfaces in titanium-graphite fiber metal laminates. Scanning electron microscopy and x-ray diffraction techniques are used to characterize the baseline physical and chemical state of the interface. The physics of adhesion between the metal and polymer matrix composite components are then evaluated on the atomistic scale using molecular dynamics simulations. Interfacial mechanical properties are subsequently derived from these simulations using classical mechanics and thermodynamics. These molecular-level property predictions are used in a companion study to parameterize a continuum-level finite element model of the interface by means of a traction-separation constitutive law. Extension of the proposed approach to other dissimilar metal- or metal oxide-polymer interfaces is also discussed.展开更多
The present paper describes an investigation conducted on metal detectors installed with a scanning probe.The authors applied a rotating magnetic field probe to metal detection.The rotating magnetic field probe is com...The present paper describes an investigation conducted on metal detectors installed with a scanning probe.The authors applied a rotating magnetic field probe to metal detection.The rotating magnetic field probe is comprised of two vertically placed rectangular exciting coils and a circular detecting coil.The experimental results confirmed that the probe can detect metal objects and provide more information about their shape,direction,and electromagnetic characteristics than conventional metal detector probes.A two-dimensional signal display shows a low-resolution image of the metal object and the signal phase indicates the object’s direction and electromagnetic characteristics.The experimental results show that excellent reconstruction of the surface shapes of metal objects can be obtained for both magnetic and nonmagnetic metals under present conditions.There is also the potential for the approximate shape of a metal object to be estimated from the reconstructed image.展开更多
基金National Key Research and Development Program of China under Grant No.2011CB013606The financial support from the National Natural Science Foundation of China under Grant No.51378343。
文摘The aseismic design of cable-stayed bridges in the transverse direction with newly proposed metallic dampers that can accommodate both longitudinal and transverse movement of the deck has recently been considered.This work focuses on developing a simplified method to design an appropriate metallic damper.The seismic performance of cablestayed bridges with different damper stiffness,main span lengths,tower shapes and types of deck in the transverse direction are investigated.The transverse displacement of the deck of a cable-stayed bridge increases significantly with the increment of the damper stiffness,which proves that the design of the damper stiffness is crucial.A simplified model considering the damper stiffness,cable system and tower in the transverse direction is developed to evaluate the period and lateral displacement of a complicated cable-stayed bridge.Based on the simplified model,a design method is proposed and assessed using two cable-stayed bridges as examples.The results show that metallic dampers can be designed with high efficiency,and the optimal ductility of the damper can be selected.
基金TSC under contract MOST 103-2625-M-009-014the Science&Technology of Fujian Province,China under Project No.2017J01495
文摘As an effort to minimize material utilization, seismic steel dampers designed to deform inelastically in an in-plane flexural mode have attracted serious attention recently. This paper presents a new type of metallic yielding damper referred to as the in-plane arch-shaped damper modified from its portal frame-shaped counterpart by replacing the straight beam with a circular arch to minimize the effects of stress concentration and warping, and therefore to avoid premature failure. Component tests of both the portal frame-shaped and arch-shaped in-plane dampers were conducted for comparison. Hysteresis loops obtained from the component tests under cyclic loads indicate substantial improvement on the energydissipative characteristics of the proposed damper. Moreover, seismic performance assessment of the proposed damper was carried out further via shaking table tests of a five-story model frame. Encouraging results have been achieved in terms of acceleration reduction, damping enhancement and peak suppression of the frequency response functions, suggesting the potential of the proposed device to be used in earthquake-resisting systems.
基金This project is supported by National Natural Science Foundation of China (No.50075017)
文摘Recur to multi-hole and better elastic characteristics of metal rubber (MR), a new squeezed film damper with MR (SFD/MR) throttle ring installed on the end of MR and MR damping ring installed on the radial direction of MR is implemented. Based on the D'alembert principle, a locomotion equation and the mathematical model of stationary response of SFD/MR system is put forward. It proves that the SFD/MR has better ability to resist unbalance loads than the traditional SFD after the stationary dynamic characteristics of the traditional SFD and the new SFD/MR are researched.
基金supported by the National Natural Science Foundation of China(Grant No.51671114)the Special Funding in the Project of the Taishan Scholar Construction Engineeringthe National Key Research Program of China(Grant No.2016YFB0300501)
文摘Molecular dynamics (MD) simulations are performed to investigate the wettability of liquid metal on the metal sub- strate. Results show that there exists different wettability on the different metal substrates, which is mainly determined by the interaction between the liquid and the substrate. The liquid metal is more likely to wet the same kind of metal substrate, which attracts the liquid metal to one side on the hybrid substrate. Exchanging the liquid metal and substrate metal has no effect on the wettability between these two metals. Moreover, the study of metal drop coalescing indicates that the metal substrate can significantly affect the coalescence behavior, in which the changeable wettability of liquid metal plays a predominant role. These studies demonstrate that the wetting behavior of liquid metal can be controlled by choosing the suitable metal substrate.
文摘Squeeze oil film damper are widely used in small high-speed aeroengine.But they are all made of high-hardness alloy steel. In order to improve their vibration absorption performance a new style of soft metal plated damper has been studied. A coat of soft metal is plated on inner surface of the oil film ring, the surface will be deformed to some extent under the effect of oil film pressure. The characteristics of such dampers are calculated and analysed. Result shows that, compared with common damper, the new style damper can change oil film pressure distribution, enhance oil film damping, decrease stiffness, and reduce the force transfered to casing.
基金Project supported by Qinglan Scholars Program of Nanchang Normal University and Natural Science Foundation(Grant No.20171BAB216001)Scientific Research Project of Education Department of Jiangxi Province,China(Grant Nos.GJJ191114,GJJ161242,and GJJ171110)the National Natural Science Foundation of China(Grant No.51871096)。
文摘The formation of mono-atomic tantalum(Ta)metallic glass(MG)through ultrafast liquid cooling is investigated by ab-initio molecular dynamics(MD)simulations.It is found that there exists nearly golden ratio order(NGRO)between the nearest and second nearest atoms in Ta MG,which has been indirectly confirmed by Khmich et al.and Liang et al..The NGRO is another universal structural feature in metallic glass besides the local five-fold symmetry(LFFS).Further analyzing of electronic structure shows that the obvious orientation of covalent bond could be attributed to the NGRO in amorphous Ta at 300 K.
文摘This study presents the first stage of a multi-scale numerical framework designed to predict the non-linear constitutive behavior of metal-composite interfaces in titanium-graphite fiber metal laminates. Scanning electron microscopy and x-ray diffraction techniques are used to characterize the baseline physical and chemical state of the interface. The physics of adhesion between the metal and polymer matrix composite components are then evaluated on the atomistic scale using molecular dynamics simulations. Interfacial mechanical properties are subsequently derived from these simulations using classical mechanics and thermodynamics. These molecular-level property predictions are used in a companion study to parameterize a continuum-level finite element model of the interface by means of a traction-separation constitutive law. Extension of the proposed approach to other dissimilar metal- or metal oxide-polymer interfaces is also discussed.
文摘The present paper describes an investigation conducted on metal detectors installed with a scanning probe.The authors applied a rotating magnetic field probe to metal detection.The rotating magnetic field probe is comprised of two vertically placed rectangular exciting coils and a circular detecting coil.The experimental results confirmed that the probe can detect metal objects and provide more information about their shape,direction,and electromagnetic characteristics than conventional metal detector probes.A two-dimensional signal display shows a low-resolution image of the metal object and the signal phase indicates the object’s direction and electromagnetic characteristics.The experimental results show that excellent reconstruction of the surface shapes of metal objects can be obtained for both magnetic and nonmagnetic metals under present conditions.There is also the potential for the approximate shape of a metal object to be estimated from the reconstructed image.